تاثیر تلقیح با باکتری‌های محرک رشد و نانو ذرات بر فرآیند انتقال ماده خشک و عملکرد تریتیکاله تحت رژیم‌های آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22067/jcesc.2024.85595.1280

چکیده

به‌منظور بررسی تاثیر باکتری‌های محرک رشد و نانو ذرات بر سهم انتقال ماده خشک و فتوسنتز جاری در عملکرد دانه تریتیکاله در رژیم‌های مختلف آبیاری، آزمایشی به‌صورت اسپلیت‌پلات فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1400 اجرا شد. رژیم‌های مختلف آبیاری در سه سطح (آبیاری کامل به‌عنوان شاهد، قطع آبیاری در 50 درصد مراحل آبستنی و سنبله‌دهی به‌ترتیب به‌عنوان محدودیت شدید و ملایم آبی معادل کد 43 و 55 مقیاس BBCH) در کرت‌های اصلی قرار داده شدند و ترکیبی از کاربرد کودهای زیستی در چهار سطح (عدم کاربرد به‌عنوان شاهد، کاربرد آزوسپریلوم، سودوموناس و کاربرد توام آزوسپریلوم و سودوموناس) و محلول‌پاشی نانوذرات در چهار سطح (محلول‌پاشی با آب به‌عنوان شاهد، محلول‌پاشی یک گرم در لیتر نانو اکسید آهن، محلول‌پاشی 50 میلی‌گرم در لیتر نانوسیلیکون و محلول‌پاشی توام نانواکسید آهن و نانوسیلیکون) به‌صورت فاکتوریل در کرت‌های فرعی قرار داده شدند. نتایج نشان داد که مصرف توام باکتری‌های محرک رشد و نانوذرات در شرایط قطع آبیاری در مرحله آبستنی، موجب کاهش درصد انتقال ماده خشک از ساقه (22.75%) و اندام هوایی (21.36%) و سهم این فرآیندها در عملکرد دانه (به‌ترتیب 58.29 و 56.24%) نسبت به شرایط عدم کاربرد باکتری‌های محرک رشد و نانوذرات در همین سطح از سطوح آبیاری شد. همچنین کاربرد توام باکتری‌های محرک رشد در شرایط قطع آبیاری در مرحله آبستنی، حجم ریشه (44.68%)، فتوسنتز جاری (48.63%)، سهم فتوسنتز جاری در عملکرد دانه (15.63%)، شاخص سطح برگ (32.82%) و عملکرد دانه (28.58%) را نسبت به عدم کاربرد باکتری‌های محرک رشد و نانوذرات تحت شرایط قطع آبیاری در مرحله آبستنی افزایش داد. براساس نتایج این آزمایش به‌نظر می‌رسد کاربرد باکتری‌های محرک رشد و نانوذرات می‌تواند به‌عنوان یک فاکتور مدیریتی مناسب برای افزایش عملکرد تریتیکاله در شرایط محدودیت آبی مدنظر باشد.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abbasi, A., Mehri, Sh., Solimanzadeha, H., & Alipourb, S. (2021). Investigation the effect of plant growth promoting rhizobacteria on growth, yield and dry matter remobilization in barley. Journal of Plant Ecophysiology, 13(47), 1-16. (in Persian with English abstract).
  2. Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The rle of pant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology, 10, 520. https://doi.org/10.3390/biology10060520
  3. Barnett, K. H., & Pearce, P. B. (1983). Source-sink ratio alteration and its effect on physiological parameters in maize. Crop Science, 23(2), 101-109. https://doi.org/10.2135/cropsci1983.0011183X002300020028x
  4. Brunetti, C., Saleem, A. R., Della Rocca, G., Emiliani, G., De Carlo, A., Balestrini, R., Khalid, A., & Mahmood, T. (2021). Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. Journal of Biotechnology, 331, 53-62. https://doi.org/10.1016/j.jbiotec.2021.03.008
  5. Chieb, M., & Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. Chieb and Gachomo BMC Plant Biology, 23, 407. https://doi.org/10.1186/s12870-023-04403-8
  6. Desoky, E. S. M., Mansour, E., Yasin, M. A., El Sobky, E. S. E., & Rady, M. M. (2020). Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. Journal of Agricultural Research, 18, 16. https://doi.org/10.5424/sjar/2020182-16122
  7. Ebadi, N., Seyed Sharifi, R., & Narimani, H. (2020). Effects of supplementary irrigation and biofertilizers on grain yield, dry matter remobilization and some physiological traits of barley (Hordeum vulgare) under rainfed conditions. Journal of Crop Production and Processing, 10(2), 123-135. (in Persian with English abstract). https://doi.org/10.47176/jcpp.10.2.25857
  8. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The ipact of drought in pant mtabolism: how to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10, 5692: 1-19. https://doi.org/10.3390/app10165692
  9. Karimi, E., Alisgharzad, N., Mousavi, S. B., & Aliloo, A. (2022). The effect of growth promoting bacteria on barley yield and morphological root characteristics under different water conditions. Journal of Soil and Plant Interactions, 13(2), 67-81. (in Persian). https://doi.org/10.47176/jspi.13.2.20531
  10. Khan, Z. S., Rizwan, M., Hafeez, M., Ali, Sh., Adrees, M., Farooq Qayyum, M., Khalid, S., Zia Ur Rehman, M., & Aleem Sarwar, M. (2020). Efects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under diferent soil moisture levels. Environmental Science and Pollution Research, 27, 4958-4968. https://doi.org/10.1007/s11356-019-06673-y
  11. Kheirizadeh Arough, Y. (2016). Effects of nano zinc oxide foliar application, arbuscular mycorrhizal fungus and free living nitrogen fixing bacteria on yield and some physiological traits of Triticale under salinity and water limitation condition. Ph.D thesis, University of Mohaghegh Ardabili, Iran.
  12. Kreslavskia, V. D., Shmarev, A. N., IvanovA, A. A., Zharmukhamedov, S. K., Strokina, V., Kosobryukhov, A., Yu, M., Allakhverdiev, S. I., & Shabala, S. (2023). Effects of iron oxide nanoparticles (Fe3O4) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum). Functional Plant Biology. https://doi.org/10.1071/fp23085
  13. Liu, Y., Zhang, P., Li, M., Chang, L., Cheng, H., Chai, S., & Yang, D. (2020). Dynamic responses of accumulation and remobilization of water-soluble carbohydrates in wheat stem to drought stress. Plant Physiology and Biochemistry155, 262-270. https://doi.org/10.1016/j.plaphy.2020.07.024
  14. Mindani, F., Khani, K., Jalali Honarmand, S., & Saeedi, M. (2020). Studying effect of plant growth-promoting rhizobacteria on ecophysiological traits of soybean (Glycine max) under irrigation regimes. Journal of Agroecology, 11(4). (in Persian with English abstract). https://doi.org/10.22067/jag.v11i4.73655
  15. Mohammadi Kale Sarlou, S., Seyed Sharifi, R., Narimani, H., & Nazari, Z. (2023). Effect of flavobacterim, vermicompost and humic acid on current photosynthesis, dry matter remobilization and their contribution in grain yield of triticale under salinity stress conditions. Journal of Plant Environmental Physiology, 69(1), 26-43. (in Persian with English abstract). https://doi.org/10.30495/iper.2022.690242
  16. Narimani, H., Seyed Sharifi, R., Khalilzadeh, R., & Aminzadeh, G. (2019). Effect of supplemental irrigation and nano iron oxide on chlorophyll content and filling components of wheat (Triticunm aestivum) under rainfed conditions. Environmental Stresses in Crop Sciences 12(3): 735-746. (In Persian).
  17. Narimani, H., Seyed Sharifi, R., & Sedghi, M. (2022). Effect of biofertilizer and putrescine application on grain filling components and dry matter remobilization of triticale (Triticosecale Wittmack) under water limitation conditions. Cereal Research, 11(4), 359-373. (in Persian with English abstract). https://doi.org/10.22124/cr.2022.22374.1726
  18. Nazari, G., Sedgi, M., & Narimani, H. (2022). Effect of salinity and application of humic acid, iron and silicon nanoxide on the contribution of remobilization process and current photosynthesis in wheat grain yield. Crop Physiology Journal, 14(54), 5-25. (in Persian).
  19. Rady, M. M., Elrys, A. S., El-Maati, M. F. A., & Desoky, E. S. M. (2019). Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant. Plant Physiology and Biochemistry, 139, 558-568. https://doi.org/10.1016/j.plaphy.2019.04.025
  20. Rajput, V. D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K. K., Singh, A., et al. (2021). Effects of silicon and silicon-based nanoparticles on rhizosphere microbiome, plant stress and growth. Biology, 10, 791. https://doi.org/10.3390/biology10080791
  21. Rasheed, A., Li, H., Tahir, M. M., Mahmood, A., Nawaz, M., Shah, A. N., Aslam, M. T., Negm, S., Moustafa, M., Hassan, M.U., & Wu, Z. (2022). The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Frontiers in Plant Science, 13, 976179. https://doi.org/10.3389/fpls.2022.976179
  22. Rezabeighi, S., Bijanzadeh, E., & Behpouri, A. (2020). Effect of silicone spraying on assimilate remobilization and yield of two bread and durum wheat under late season water stress. Journal of Plant Production, 27(3), 55-71. (in Persian). https://doi.org/10.22069/jopp.2020.16384.2491
  23. Rizwan, M., Ali, Sh., Ali, B., Adrees, M., Arshad, M., Hussain, A., Zia Ur Rehman, M., & Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277. https://doi.org/10.1016/j.chemosphere.2018.09.120
  24. Safi, S. N., Moshatati, A., Gharineh, M. H., & Khodaei Joghan, A. (2022). The effect of sugarcane residue compost on growth and grain yield of triticale under drought stress. Plant Productions, 45(2), 253-266. (in Persian with English abstract). https://doi.org/10.22055/ppd.2021.36017.1961
  25. Saleemi, M., Kiani, M. Z., Sultan, T., Khalid, A., & Mahmood, S. (2017). Integrated effect of plant growth-promoting rhizobacteria and phosphatesolubilizing microorganisms on growth of wheat (Triticum aestivum) under rainfed condition. Agriculture and Food Security, 6, 46. https://agricultureandfoodsecurity.biomedcentral.com/articles/10.1186/s40066-017-0123-7
  26. Salehi, F., Ahmadi, A., Mirabzadeh, M., & Rafei, H. R. (2020). Evaluation of storage and remobilization of stem dry matter of three wheat cultivars under different moisture regimes in before and after flowering stages. Iranian Journal of Field Crop Science, 51(1), 35-49. (in Persian with English abstract). https://doi.org/10.22059/ijfcs.2018.227966.654279
  27. Seyed Sharifi, R., & Gholinejad, E. (2021). Evaluation of agronomic and morphophysiological traits of crops. Mohaghegh Ardabili university press. Number page 410.
  28. Sharifani, M. M., Farhadi, H., Alizade, M., Hokmabadi, H., & Aliniaeifard, S. (2021). Evaluation of chlorophyll fluorescence changes, the amount of biomass of the rootstocks and interspecific hybrids of the genus pistachios (P. Vera × P. integerrima) in order to achieve drought tolerant rootstocks. Pomology Research Scientific Journal, 5(2), 155-171. (in Persian with English abstract).
  29. Ur Rehman, M. M., Zhu, Y., Abrar, M., Khan, W., Iqbal, A., Khan, A., Chen, Y., Rafiq, M., Tufail, M. A., Ye, J., & Xiong, Y. (2022). Moisture- and period-dependent interactive effects of plant growth-promoting rhizobacteria and AM fungus on water use and yield formation in dryland wheat. Plant and Soil, 6, 1-25. https://doi.org/10.21203/rs.3.rs-1516690/v1
  30. Yuan, Y., Zu, M., Sun, L., & Zuo, J. (2022). Isolation and screening of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing PGPR from Paeonia lactiflora rhizosphere and enhancement of plant growth. Scientia Horticulturae, 297, 110956. https://doi.org/10.1016/j.scienta.2022.110956
CAPTCHA Image

مقالات آماده انتشار، اصلاح شده برای چاپ
انتشار آنلاین از تاریخ 26 اردیبهشت 1403
  • تاریخ دریافت: 06 آذر 1402
  • تاریخ بازنگری: 26 دی 1402
  • تاریخ پذیرش: 03 بهمن 1402
  • تاریخ اولین انتشار: 26 اردیبهشت 1403