ارزیابی شاخص‌های فیزیولوژیکی رشد ارقام کینوا (Chenopodium quinoa Willd.) تحت تأثیر سطوح مختلف رطوبتی در کشت بهاره و تابستانه در منطقه خراسان جنوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

3 عضو گروه پژوهشی گیاه و تنش‌های محیطی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

4 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

تاریخ کاشت کینوا بسته به ژنوتیپ، شرایط اقلیمی هر منطقه و همچنین دسترسی به آب، متفاوت می‌باشد، بنابراین به‌منظور ارزیابی شاخص‌های رشدی سه رقم کینوا تحت تأثیر سطوح رطوبتی، چهار آزمایش مجزا در دو منطقه (بیرجند و سربیشه) و دو تاریخ کاشت (اسفند و مرداد) در سال‌های 99-1398 به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار اجرا شد. فاکتورهای آزمایش شامل پنج سطح رطوبتی (25، 50، 75، 100 و 125 درصد نیاز آبی گیاه) و سه رقم کینوا (تیتیکاکا، گیزاوان و ردکارینا) بود. روند تغییرات شاخص‌های رشدی در طول فصل رشد مورد ارزیابی قرار گرفت و تجزیه واریانس پس از برش‌دهی فیزیکی داده‌ها، به‌صورت جداگانه برای هر مرحله از نمونه‌برداری انجام شد. روند تغییرات شاخص سطح برگ سه رقم نشان داد که در تاریخ کاشت اسفندماه و مردادماه، زمان رسیدن به حداکثر LAI در شهرستان بیرجند به‌ترتیب بین 106 الی 107 و بین 73 الی 76 روز پس از سبزشدن و در شهرستان سربیشه به‌ترتیب در روز 104 و بین 65 الی 72 روز پس از سبزشدن مشاهده شد. به‌طور کلی در اسفندماه در هر دو منطقه مورد مطالعه، رقم ردکارینا، دارای بیشترین مقادیر حداکثر LAI (4.5 در بیرجند و 6.7 در سربیشه) و حداکثر CGR (17.93 و 20.63 گرم بر مترمربع زمین در روز به‌ترتیب در بیرجند و سربیشه) بود و در مردادماه رقم گیزاوان بالاترین میزان حداکثر LAI (6.4 در بیرجند و 6 در سربیشه) و حداکثر CGR (19.32 و 18.11 گرم بر مترمربع زمین در روز به‌ترتیب در بیرجند و سربیشه) را به خود اختصاص داد. همچنین بیشترین RGR و NAR در ابتدای فصل رشد در کشت اسفندماه در هر دو شهرستان مورد مطالعه، متعلق به رقم ردکارینا و در کشت مردادماه، متعلق به رقم گیزاوان بود. در بررسی اثر سطوح رطوبتی نیز می‌توان بیان نمود که بالاترین میزان شاخص‌های LAI، CGR، RGR و NAR در سطح 125 درصد نیاز آبی مشاهده شد به‌طوری‌که حداکثر میزان شاخص LAI در کشت‌های اسفندماه سربیشه و بیرجند و مردادماه سربیشه و بیرجند به‌ترتیب برابر با 8.2، 5.3، 6.5 و 7.2، حداکثر میزان CGR به‌ترتیب برابر با 28.78، 23.56، 22.96 و 26.18 گرم بر مترمربع زمین در روز، بالاترین میزان RGR در ابتدای فصل رشد به‌ترتیب 0.189، 0.186، 0.214 و 0.200 گرم بر گرم در روز و بالاترین میزان  NARدر ابتدای فصل رشد به‌ترتیب 6.16، 10.22، 7.68 و 9.27 گرم بر مترمربع برگ در روز مشاهده شد. کمترین میزان شاخص‌های رشدی در تیمار کاربرد آبیاری به میزان 25 درصد نیازآبی مشاهده گردید. به‌طور کلی می‌توان بیان نمود که بالاترین میزان شاخص‌های رشدی و بیشترین عملکرد دانه در کشت اسفندماه در هر دو شهرستان مورد مطالعه، متعلق به رقم ردکارینا و در کشت مردادماه، متعلق به رقم گیزاوان بود. اعمال کم‌آبیاری نیز موجب کاهش معنی‌دار شاخص‌های رشدی و عملکرد دانه در هر چهار آزمایش گردید.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abtali, Y., Baghestani, M. A., & Abtali, M. (2009). Competitive effect of wild mustard (Sinapis arvensis) on yield and growth indices of canola (Berasica napus L.) cultivars. Weed Research Journal, 1(2), 63-72.
  2. Akbari, S., Kafi, M., & Rezvan Beidokhti, S. (2017). Effect of drought stress on growth and morphological characteristics of two garlic (Allium sativum ) ecotypes in different planting densities. Journal of Agroecology, 9(2), 559-574. (in Persian with English abstract). https://doi.org/10.22067/jag.v9i2.62141
  3. AlKhamisi, S. A., Nadaf, S. K., Al-Jabri, N. M., Al-Hashmi, K. S., Al-Shirawi, A. I., Khan, R. R., Al-Sulaim, H. A., & Al-Azri, M. S. (2021). Productivity of Quinoa (Chenopodium quinoa) Genotypes across Different Agro-Ecological Regions of Oman. The Open Agriculture Journal, 15, 98-109. https://doi.org/10.2174/1874331502115010098
  4. Amer, S., Hassan, M., Ehsanullah, Shakeel, A. A., Mohsin, T., & Aziz, R. (2014). Growth and development of Chenopodium quinoa genotypes at different sowing dates. Journal of Agricultural Research, 52(4), 535-546.
  5. Amiri Deh Ahmadi, S. R., Parsa, M., Nezami, A., & Ganjeali, A. (2011). The effects of drought stress at different phenological stages on growth indices of chickpea (Cicer arietinum ) in greenhouse conditions. Iranian Journal of Pulses Research, 1(2), 69-84. (in Persian with English abstract).
  6. Bagheri, M. (2018). Handbook of quinoa cultivation. Seed and Plant Improvement Institute 48 P. (In Persian).
  7. Bahreininejad, B., & Razmjoo, J. (2014). Effects of water stress on physiological growth indices and phonological traits in Thymus kotschyanus Boiss. Journal of Plant Process and Function, 3(7), 67-80. (In Persian). https://dorl.net/dor/20.1001.1.23222727.1393.3.7.6.9
  8. Baygi, Z., Saifzade, S., Shirani Rad, A. H., Valadabad, S. A. R., & Jafarinejad, A. (2017). Effects of planting date on growth indices and yield and yield components spring wheat cultivars in Neyshabur. Applied Field Crops Research, 30(2), 1-18. (In Persian). https://doi.org/10.22092/aj.2018.109088.1113
  9. Bazile, D., Jacobsen, S. E., & Verniau, A. (2016 a). The global expansion of quinoa: trends and limits. Frontiers in Plant Science, 7, 1-6. https://doi.org/10.3389/fpls.2016.00622
  10. Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., Hassan, L., Mohammed, M. I., Mambetov, O., Otambekova, M., Sepahvand, N. A., Shams, A., Souici, D., Miri, K., & Padulosi, S. (2016 b). Worldwide Evaluations of Quinoa: Preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in Plant Science, 7, 1-18. https://doi.org/10.3389/fpls.2016.00850
  11. Corraliza, M. G., Rplp, V., Lopez, M. L., & Moreno, G. (2019). Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Scientific Reports, 9, 9547. https://doi.org/10.1038/s41598-019-46027-9
  12. Dadrasi, V. A., Aboutalebian, M. A., Ahmadvand, G., Mousavi, S. S., & Seyedi, M. (2012). Effect of on-farm seed priming and irrigation interval the on-growth indices of two corn cultivars (Zea mays L.). Cereal Knowledge, 5(7), 67-88. (in Persian with English abstract).
  13. De Oliveira Vergara, R., Martins, A. B. N., Pedo, T., Radke, A. K., Gadotti, G. I., Villela, F. A., da Motta Xavier, F., Eberhardt, P. E. R., Cavalcante, J. A., & Meneguzzo, M. R. R. (2019). Plant growth and physiological quality of quinoa (Chenopodium quinoa Willd) seeds grown in Southern Rio Grande do Sul, Brazil. Australian Journal of Crop Science13(5), 678-682. https://doi.org/10.21475/ajcs.19.13.05.p1240.
  14. Esfandyari, J., & Fotokian, M. H. (2021). Relationships between some Morphological Traits with Grain and Plant Dry Weight in Quinoa (Chenopodium quinoa ) Genotypes. Plant Production Technology, 21(1), 135-146. (in Persian with English abstract). https://doi.org/10.22084/PPT.2021.21704.1994
  15. Fazeli, F., Akbari, G. A., Akbari, G. A., Naderi Arefi, A., & Benakashani, F. (2021). Response of different quinoa (Chenopodium quinoa) genotypes to planting date in terms of morphological traits, yield and yield components in Garmsar region. Iranian Journal of Field Crop Science, 52(2), 41-49. (in Persian with English abstract). https://doi.org/10.22059/ijfcs.2020.303866.654725
  16. Fghire, R., Anaya, F., Ali Issa, O., & Wahbi, S. (2017). Physiological and growth response traits to water deficit as indicators of tolerance criteria between quinoa genotypes. Journal of Materials and Environmental Sciences, 8(6), 2084-2093.
  17. Fghire, R., Wahbi, S., Anaya, F., Ali Issa, O., Benlhabib, O., & Ragab, R. (2015). Response of quinoa to different water management strategies: field experiments and saltmed model application results. Irrigation and Drainage. Published online in Wiley Online Library (wileyonlinelibrary.com). 1-12. https://doi.org/10.1002/ird.1895.
  18. Food and Agriculture Organization (FAO). (2023). https://www.fao.org/faostat/en/#data/QCL. [Online: 22 August 2023].
  19. Ghiasabadi, M., Khajeh Hosseini, M., & Mohammadabadi, A. (2014). The Study of Transplanting Date on Growth Analyses and Forage Yield of Maize (Zea mays) under Mashhad Conditions. Iranian Journal of Field Crops Research, 12(1), 137-145. (In Persian). https://doi.org/10.22067/gsc.v12i1.36650
  20. Haghjoo, M., & Bahrani, A. (2015). Evaluating yield variations of corn (single cross 260) at different water regimes and nitrogen rates by using of growth indices. Journal of Crop Ecophysiology, 9(2), 259-274. (in Persian with English abstract).
  21. Hosseini, S. H., RahemiKarizaki, A., Biabani, A., Nakhzari moghaddam, A., & Taliey, F. (2020). Investigation of changes in physiological characteristics and yield of Quinoa (Chenopodium quinoa Willd) under different cultivation date. Crop Production, 13(2), 99-116. (In Persian). https://doi.org/10.22069/ejcp.2020.17953.2325
  22. Jacobsen, S. E. (2017). The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science, 203, 603-613. https://doi.org/10.1111/jac.12228
  23. Jacobsen, S. E., Liu, F., & Jensen, C. R. (2009). Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa ). Horticultural Scientia, 122, 281-28. https://doi.org/10.1016/j.scienta.2009.05.019
  24. Jamali, S., Shaifan, H., & Sajadi, F. (2019). The effect of different seawater and deficit irrigation regimes on leaf properties of quinoa. Water and Irrigation Management, 8(2), 177-191. (in Persian with English abstract). https://doi.org/10.22059/jwim.2018.249473.585
  25. Javadi, H., Rashed Mohassle, M. H., Zamani, Gh. R., Azari Nasrabad, A., & Mossavi, Gh. R. (2006). Effect of plant density on growth indices of four grain sorghum cultivars. Iranian Journal of Field Crops Research, 4(2), 253-266. (In Persian). https://doi.org/10.22067/gsc.v4i2.1266
  26. Jorfi, A., Alavifazel, M., Gilani, A., & Ardakani, M. R. (2022). Leaf Chlorophyll Changes and Morphological Features of Quinoa (Chenopodium quinoa) Cultivars by P-Zn Ratios in Greenhouse Condition. Journal of Crop Nutrition Science8(1), 1-16.
  27. Kakabouki, I. P., Roussis, I. E., Papastylianou, P., Kanatas, P., Hela, D., Katsenios, N., & Fuentes, F. (2019). Growth analysis of quinoa (Chenopodium quinoa) in response to fertilization and soil tillage. Not Bot Horti Agrobo, 47(4), 1025-1036. https://doi.org/10.15835/nbha47411657
  28. Kansomjet, P., Thobunluepop, P., Lertmongkol, S., Sarobol, E., Kaewsuwan, P., Junhaeng, P., Pipattanawong, N., & Iván, M. T. (2017). Response of physiological characteristics, seed yield and seed quality of quinoa under difference of nitrogen fertilizer management. American Journal of Plant Physiology, 12, 20-27. https://doi.org/10.3923/ajpp.2017.20.27
  29. Karimi, M., & Azizi, M. (1997). Basic growth analysis. Jahad Daneshgahi of Mashhad Prees.111 P. (in Persian).
  30. Kibe, A. M., Singh, S., & Kalra, N. (2006). Water–nitrogen relationships for wheat growth and productivity in late sown conditions. Agricultural Water Management, 84, 221-228. https://doi.org/10.4314/jagst.v7i1.31716
  31. Koca, Y. O. (2021). Determination of the forage yield and growth parameters of maize (Zea mays ) with quinoa (Chenopodium quinoa) intercropping at different plant mixtures. Turk journal Field Crops, 26(1), 44-53. https://doi.org/10.17557/tjfc.877640
  32. Mohammadi, F., Maleki, A., & Fathi, A. (2021). Effects of Drought Stress and Humic Acid on Plant Growth, Yield Quality and Its Components of Quinoa (Chenopodium quinoa Willd). Journal of Crop Nutrition Science7(3), 11-23.
  33. Molden, D., Murry-Rust, H., Sakthivandival, R., & Makin, I. (2001). A water productivity framework for understanding and action. Workshop on Water Productivity. Wadduwe, Sri Lanka, 12 -13 November.
  34. Nadali, F., Asghari, H. R., Abbasdokht, H., Dorostkar, V., & Bagheri, M. (2022). Physiological Responses of Quinoa Varieties (Chenopodium quinoa Willd) to Hydropriming and Drought Stress. Journal of Crop Production and Processing, 12(2), 49-62. (in Persian with English abstract). https://doi.org/10.47176/jcpp.12.2.36912
  35. Nadeem, T. M. H., Imran, M., Kamil, F., & Husain, M. (2002). Evaluation of sunflower Helianthus annuus inbred lines for drought tolerance. International Journal of Agriculture and Biology, 25, 398-400.
  36. Navabpour, S., Latifi, N., Hosseini, S. H., & Kazemi, G. (2012). Evaluation of grain yield in relation to yield components and growth indices in wheat. Crop Production, 4(3), 157-173. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.2008739.1390.4.3.9.5
  37. Oneto, C. D., Otegui, M. E., Baroli, I., Beznec, A., Faccio, P., Bossio, E., Blumwald, E., & Lewi, D. (2016). Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. Journal of Biotechnology, 220, 66-77. https://doi.org/10.1016/j.jbiotec.2016.01.014
  38. Ozoni Davaji, A., Esfahani, M., Sami Zadeh, H., & Rabiei, M. (2008). Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous flowers and petalled rapeseed (Brassica napus ) cultivars. Iranian Journal of Crop Sciences, 9(4), 382-400. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.15625540.1386.9.4.7.9
  39. Ramesh, K. Suneetha Devi, K. B., Gopinath, K. A., & Uma Devi, M. (2017). Physiological Indices, Yield and Yield Attributes of Quinoa (Chenopodium quinoa) as Influenced by Dates of Sowing and Varied Crop Geometry. International Journal of Current Microbiology and Applied Sciences, 6(7), 1023-1034. https://doi.org/10.20546/ijcmas.2017.607.123
  40. Reguera, M., Conesa, C., Gil-Gómez, A., Haros, C., Pérez-Casas, M., Briones-Labarca, V., … & Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds. Peer-reviewed Journal, 14(6), 1-20. https://doi.org/10.7717/peerj.4442
  41. Rowshani, R., Soleymani, A., Mahlooji, M., & Naderi, M. R. (2022). Evaluation of the effect of foliar application on some physiological indicators affecting the growth and yield of barley cultivars under drought stress conditions. Journal of Crop Science Research in Arid Regions, 3(2), 319-337. (in Persian with English abstract). https://doi.org/10.22034/CSRAR.2022.297001.1111
  42. Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34, 349-359.
  43. Sadeghizadeh, H., Khajoei-Nejad, G. R., & Ghanbari. J. (2021). Water use efficiency and quantitative and qualitative response of quinoa to different concentrations of salicylic acid application under deficit irrigation conditions. Irrigation and Water Engineering, 11(43), 345-360. (in Persian).
  44. Salek Mearaji, H., Tavakoli, A., & Sepahvand, N. A. (2020). Evaluating the effect of cytokinin foliar application on morphological traits and yield of quinoa (Chenopodium quinoa ) under optimal irrigation and drought stress conditions. Journal of Crop Ecophysiology, 14(4), 479-498. (in Persian with English abstract). https://doi.org/10.30495/jcep.2021.679976
  45. Samadzadeh, A. R., Zamani, G. R., & Fallahi, H. R. (2020). Possibility of quinoa production under South-Khorasan climatic condition as affected by planting densities and sowing dates. Applied Field Crops Research, 33(1), 82-104. (In Persian). https://doi.org/10.22092/aj.2020.125793.1392
  46. Sanodiya, L. K., Umesha, C., Mesharm, M. R., & Kumar, R. (2022). Influence of crop geometry and nitrogen levels on growth indices of quinoa (Chenopodium quinoa). The Pharma Innovation Journal, 11(3), 1003-1008.
  47. Shahidi, A., Kashkuli, H. A. & Zamani, G. R. (2008). Interaction of deficit irrigation and salinity on yield and yield components of wheat cultivars and determining water salinity production function in the Birjand region. PHD Thesis. Shahid Chamran University of Ahwaz. 337 PP. (In Persian).
  48. Shaifan, H., Jamali, S., & Sajadi, F. (2018). Investigation the effect of different salinity levels on the morphological parameters of quinoa (Chenopodium quinoa Willd.) under different iIrrigation regimes. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 22(2), 15-27. (in Persian with English abstract). https://doi.org/10.29252/jstnar.22.2.15
  49. Shirinnezhad, R., Torabi, M., & Mahmoudi, F. (2019). Evaluation of compatibility of Quinoa cultivars in different planting dates and their effects on morphological, physiological and biochemical parameters. 2nd international and 6th national conference on organic and conventional agriculture. University of Mohaghegh Ardabili. (in Persian with English abstract).
  50. Shitikova, A. V., Kukharenkova, O. V., & Khaliluev, M. R. (2022). The Crop Production Capacity of Quinoa (Chenopodium quinoa)- A New Field Crop for Russia in the Non-Chernozem Zone of Moscow’s Urban Environment. Agronomy12(12), 3040. https://doi.org/10.3390/agronomy12123040
  51. Soleymani, A. (2017). Effect of drought stress on some physiological growth indices of sunflower cultivars. Environmental Stresses in Crop Science, 10(4), 509-519. (in Persian with English abstract). https://doi.org/10.22077/escs.2017.108.1028
  52. Sun, Y., Liu, F., Bendevis, M., Shabala, S., & Jacobsen, S. E. (2014). Sensitivity of two quinoa (Chenopodium quinoa ) varieties to progressive drought stress. Journal of Agronomy and Crop Science, 200(1), 12-23. https://doi.org/10.1111/jac.12042
  53. Vahedi, M. R., Tohidi Nejad, E., & Pasandi Pour, A. (2021). Evaluation of yield and yield components of quinoa (Chenopodium quinoa Willd) in as affected by different planting densities. Journal of Crop Ecophysiology, 15(4), 593-608. (in Persian with English abstract). https://doi.org/10.30495/jcep.2022.689808
CAPTCHA Image