اثر محلول‌پاشی کیتوزان بر خصوصیات فیزیولوژیکی کمای بینالودی (Ferula flabelliloba) تحت تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد نیشابور

چکیده

یکی از روش‌های سازگار با محیط زیست برای کاهش خسارت ناشی از تنش خشکی در گیاهان محلول‌پاشی با ترکیبات کیتوزانی است. به منظور بررسی اثر تنش خشکی و محلول‌پاشی کیتوزان بر صفات فیزیولوژیکی کمای بینالودی، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار و در شرایط آزمایشگاه اجرا شد. تیمارهای آزمایشی شامل تنش خشکی (آبیاری در حد ظرفیت زراعی، تخلیه 35 و 65 درصد رطوبت ظرفیت زراعی) و محلول‌پاشی کیتوزان (صفر، 2/0، 4/0، 6/0 و 8/0 گرم در لیتر) بودند. نتایج نشان داد که تخلیه رطوبت بستر تا 65 درصد حد ظرفیت زراعی باعث کاهش وزن خشک اندام هوایی شد ولی مقدار فنل کل و فعالیت آنزیم‌های سوپراکسید دیسموتاز، کاتالاز و غلظت مالون‌دی‌آلدئید را افزایش داد. بالاترین وزن خشک اندام هوایی در گیاهان محلول‌پاشی شده با 4/0 میلی‌گرم در لیتر کیتوزان به‌دست آمد. بیشترین مقدار فعالیت آنزیم‌های کاتالاز و سوپراکسید دیسموتاز و بیشترین مقدار فنل کل در گیاهان آبیاری شده پس از تخلیه 65 درصد رطوبت ظرفیت زراعی و محلول‌پاشی شده با غلظت‌های 6/0 و 8/0 میلی‌گرم در لیتر کیتوزان اندازه‌گیری شد. نتایج این آزمایش نشان داد که محلول‌پاشی کیتوزان در شرایط بروز تنش خشکی قادر است با تحریک سیستم دفاع آنتی‌اکسیدانی گیاه از شدت بروز خسارت در گیاه کمای بینالودی بکاهد.

کلیدواژه‌ها


1. Abdalla, M. M. 2011. Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agriculture & Biology Journal of North America 2: 207- 220.
2. Agarwal, S., Sairam, R. K., Srivatava, G. C., and Meena, R. C. 2005. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum 49 (4): 541- 550.
3. Amudha, J., and Balasubramani, G. 2010. Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnology and Molecular Biology Review 6 (2): 31-58.
4. Beauchamp, C., and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Annual Journal of Biochemistry 44: 276-287.
5. Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., and Fallik, E. 2003. Controlling gray mold caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection 22: 285-290.
6. Bittelli, M., Flury, M., Campbell, G. S., and Nichols, E. J. 2001. Reduction of transpiration through foliar application of chitosan. Agricultural Forest Meteorology 107: 167-175.
7. Boonlertinirun, S., Chaweewan, B., and Suvanasara, R. 2008. Application of chitosan in rice production. Journal of Metals, Materials and Minerals 18 (2): 47-52.
8. Chamberlain, D. F., and Rechinger, K. H. 1987. Ferula L. In: Flora Iranica, Umbelliferae. (eds.) Hedg I. C., Lamond J. M. and Rechinger, K. H.) 162: 387-426. Akademische Druck- und Verlagsanstalt, Graz.
9. Chen, H. P., and Xu, L. L. 2005. Progress of study on chitosan in regulating plant’s growth and eliciting plant’s defense responses. Acta Botanica Yunnanica 27 (6): 613-619.
10. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., and Feller, U. 2009. Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiolical Plantarum 31: 1129-1138.
11. Ebrahimzadeh, M. A., and Bahramian, F. 2009. Antioxidant activity of Crataegus pentagina subsp. elbursis fruits extracts used in traditional medicine in Iran. Pakistan Journal of Biological Sciences 12 (5): 413- 419.
12. Fawzy, Z. F., El-Shal, Z. S., Yunsheng, L., Ouyang, Z., and Omaima, M. S. 2012. Response of garlic (Allium Sativum L.) plants to foliar spraying of some bio-stimulants under sandy soil condition. Journal of Applied Sciences Research 8 (2): 770-776.
13. Gupta, A., and Kaur, N. 2005. Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stress in plant. Journal of Bioscience 30: 761-776.
14. Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., and Gavara, R. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragari X ananassa) quality during refrigerated storage. Food Chemistry 110: 428-435.
15. Iriti, M., and Faoro, F. 2009. Chitosan as a MAMP, searching for a PRR. Plant Signal Behaviors 4 (1): 66-68.
16. Jiang, Y., and Hung, B. 2001. Drought and heat stress injury to two cool-season turf grasses in relation to antioxidant metabolism lipid peroxidaion. Crop Science 41: 436-442.
17. Kiddle, G. 2004. The role of ascorbate in plant defense and development. Bristol, UK: University of Bristol.
18. Mahdavi, B., Modarres Sanavy, S. A. M., Aghaalikhani, M., Sharifi, M., and Alavi Asl, S. A. 2014. Effect of Foliar Application of chitosan on growth and biochemical characteristics of Safflower (Carthamus tinctorius L.) under water deficit stress. Iranian Journal of Field Crops Research 12 (2): 229-236. (in Persian with English summary).
19. Makkar, H. P. S., Singh, B., and Dawra, R. K. 1988. Effect of tannin-rich leaves of oak (Quercus incana) on various microbial enzyme activities of the bovine rumen. British Journal of Nutrition 60 (2): 287-296.
20. Mondal, M. M., Malek, M. A., Puteh, A. B., Ismail, M. R., and Ashrafuzzaman, M. 2012. Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science 6 (5): 918-921.
21. Morello, J. R., Romero, M. P., Ramo, T., and Motilva, M. J. 2005. Evaluation of L-phenylalanine ammonialyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Science 168: 65-72.
22. Rinaudo, M. 2006. Chitin and chitosan: properties and applications. Progress in Polymer Science 31 (7): 603-632.
23. Sairam, R. K., and Saxena, D. C. 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science 184: 55-61.
24. Thomas, F. M., and Schafellner, C. 1999. Effects of excess nitrogen and drought on the foliar concentrations of allelochemicals in young oaks (Quercus robur L. and Q. petraea [Matt.]. Liebl. Journal of Applied Botany 73: 222-227.
25. Uthairatanakij, A., Teixeira, J. A., and Obsuwan, K. 2007. Chitosan for improving Orchid production and quality. Science 1: 1- 5.
26. Vurayai, R., Emongor, V., and Moseki, B. 2011. Effect of water stress imposed at different growth and development stages on morphological traits and yield of bambara groundnuts (Vigna subterranean (L.) Verde). American Journal of Plant Physiology 6 (1): 17- 27.
27. Waseem, S., Hamid, M., Ishrat, N., Waqas, K. K., Haroon, A., Saqib, H., and Atif, K. 2010. Pharmacognostical study of the medicinal plant Calendula officinalis L. (Family Compositae). International Journal of Cell & Molecular Biology 1 (2): 108-116.
28. Weydert, C. J., and Cullen, J. J. 2010. Measurement of superoxide dismutase, catalase, and glutathione peroxidase in cultured cells and tissue. Natural Protocol 5 (1): 51-66.
29. Wojdyla, A. T. 2004. Chitosan (biochikol 020 PC) in the control of some ornamental foliage diseases. Communications in Agricultural and Applied Biological Sciences 69: 705-715.
30. Yang Feng, H., Li, J., Wu, J., and Yurong, X. Q. 2009. Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regulation 58: 131-136.
31. Zeng, D., and Luo, X. 2012. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Journal of Soil Science 2 (3): 282-288.
32. Zhili, J., Yong, L., Juanjuan, L., Xu, X., Li, H., Lu, D., and Jingying, W. 2012. Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Research 55: 293-301.
CAPTCHA Image