نقشه‌یابی QTL‌های کنترل‌کننده صفات فنولوژیک جو تحت شرایط نرمال و تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه زابل

چکیده

به‌منظور مکان‌یابی نواحی ژنومی کنترل‌کننده صفات فنولوژیک جو تحت شرایط نرمال و تنش خشکی آزمایشی در سال زراعی 90-1389 با 72 لاین هاپلوئید مضاعف به‌همراه والدین آنها (استپتو و مورکس) در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه زابل، در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در دو شرایط آبیاری نرمال و تنش خشکی اجرا گردید. صفات فنولوژیک روز تا جوانه‌زنی، روز تا پنجه‌دهی، روز تا ساقه‌دهی، روز تا سنبله‌دهی، روز تا گلدهی، روز تا شیری شدن دانه، روز تا خمیری شدن دانه، روز تا رسیدگی دانه و دوره پر شدن دانه اندازه‌گیری شد. تجزیه QTL به روش مکان‌یابی فاصله‌ای مرکب (CIM) با استفاده از نسخه 5/2 نرم افزار QTL کارتوگرافر انجام شد. نقشه لینکاژی نشانگرهای مولکولی جو مرکب از 327 نشانگر RFLP با طول 3/1226 و متوسط فاصله 75/3 سانتی‌مورگان بود. اثر ژنوتیپ برای کلیه صفات مورد مطالعه معنی‌دار (01/0P

کلیدواژه‌ها


1- Aminfar, Z., M. Dadmehr, B. Korouzhdehi, B. A. Siahsar, and M. Heidari. 2011. Determination of chromosomes that control physiological traits associated with salt tolerance in barley at the seedling stage. African Journal of Biotechnology 10 (44): 8794-8799.
2- Ayoub, M., E. Armstrong, G. Bridger, M. G. Fortin, and D. E. Mather. 2003. Marker-based selection in barley for a QTL region affecting alpha amylase activity of malt. Crop Science 43: 556-561.
3- Bezant, J., D. Laurie, N. Pratchett, J. Chojecki, and M. Kearsey. 1996. Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77: 64-73.
4- Boyd, W. J. R., C. D. Li, C. R. Grime, M. Cakir, S. Potipibool, L. Kaveeta, S. Men, M. R. J. Kamali, A. R. Barr, D. B. Moody, R. C. M. Lance, S. J. Logue, H. Raman, and B. J. Rea. 2003. Conventional and molecular genetic analysis of factors contributing to variation in the timing of heading among spring barley (Hordeum vulgare L.) genotypes grown over a mild winter growing season. Australian Journal of Agricultural Research 54: 1277-1301.
5- Bregitzer, P., and R. D. Campbell. 2001. Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Science 41: 173-179.
6- Buck-Sorlin, G. H. 2002. The search for QTL in barley (Hordeum vulgare L.) using a new mapping population. Cellular and Molecular Biology Letters 7 (2A): 523-35.
7- Cardinal, A. J., M. Lee, and K. J. Moore. 2003. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theoritical and Appllied Genetics 106: 866-874.
8- Castro, A. J., P. Hayes, L. Viega, and I. Vales. 2008. Transgressive segregation for phenological traits in barley explained by two major QTL alleles with additivity. Plant Breeding 127: 561-568.
9- Chen, F., and P. M. Hayes. 1989. A comparison of Hordeum bulbosum-mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theoritical and Appllied Genetics 77: 701-704.
10- Darvasi, A., and M. Soller. 1997. A simple method to calculate resolving power and confidence of QTL map location. Behavior Genetics 27: 125-132.
11- Dudley, J. W. 1993. Molecular markers in plant improvement. Crop Science 33: 660-668.
12- Ellis, R. H., R. J. Summerfeld, E. H. Roberts, and J. P. Cooper. 1989. Environmental control of flowering in barley (H. vulgare L.) III. Analysis of potential vernalization responses, and methods of screening germplasm for sensitivity to photoperiod and temperature. Annals of Botany 63: 687-704.
13- Fakheri, B. A., and L. Mehravaran. 2014. QTLs mapping of physiological and biochemical traits of barley under drought stress condition. Iranian Journal of Crop Science 15 (4): 367-386. (In Persian).
14- Fakheri, B. A., and L. Mehravaran. 2013. Locating QTLs controlling agronomic traits of “Steptoe×Morex” derived double haploid population of barley under drought stress conditions. Iranian Journal of Field Crop Science 44 (1): 47-57. (In Persian).
15- Gallagher, L. W., K. M. Solliman, and H. Vivar. 1991. Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Science 31: 256-261.
16- German, S., M. Arbelbide, T. Abadie, R. Romero, and A. Peculio. 2000. Characterization of photoperiod response of barley genotypes from diverse origin. In: S. Logue (ed.), Barley Genetics VIII, 212-214, Vol. III – Contributed Papers. Department of Plant Science, Aderaide University, Glen Osmond.
17- Gyenis, L., S. J. Yun, K. P. Smith, B. J. Steffenson, E. Bossolini, G. J. Sanguineti, and G. J. Muehlbauer. 2007. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50 (8): 714-723.
18- Han, F., S. E. Ullrich, I. Romagosa, J. A. Clancy, J. A. Froseth, and D. M. Wesenberg. 2003. Quantitative genetic analysis of acid detergent fiber content in barley grain. Cereal Science 38: 167-172.
19- Hayes, P. M. 1992. Economic trait loci (quantitative trait loci = QTL) analysis progress report. North American Barley Genome Mapping Project (NABGMP). Barley Genetics Newsletter 21: 30-31.
20- Hayes, P. M., B. H. Liu, S. J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D. Rasmmusson, M. Sorrells, S. E. Ullrich, D. Wesenberg, and A. Kleinhofs. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theoritical and Appllied Genetics 87: 392-401.
21- Hayes, P. M., and O. E. Iyambo. 1994. Summary of QTL effects in the Steptoe×Morex population. Barley Genetics Newsletter 23: 98-143.
22- Jansen, R. C., and P. Stam. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.
23- Johenson, H. W., H. F. Robinson, and R. E. Comestock. 1995. Estimates of genetic and environmental variability in soybean. Agronomy Journal 47: 314-318.
24- Kearsey M. J., and A. G. L. Farquhar. 1998. QTL analysis in plants: where are we now? Heredity 80: 137-142.
25- Kim, S. C., and L. H. Rieseberg. 1999. Genetic architecture of species differences in annual sunflowers implication for adaptive trait introgression. Genetics 153: 965-977.
26- Kleinhofs, A., and A. Graner. 2001. An integrated map of the barley genome. pp: 187-199. In: Philips, R.L. and I.K. Vasil (eds.) DNA-Based Markers in Plants. Kluwer Academic Publications.
27- Kleinhofs, A., A. Kilian, M. A. Saghai Maroof, R. M. Biyashev, P. Hayes, F. Q. Chen, N. Lspitan, A. Fenwick, T. K. Blake, V. Kanazin, E. Ananiev, L. Dahleen, D. Kurdna, J. Bollinger, S. J. Knapp, B. Liu, M. Sorrells, M. Heun, J. D. Franckowiak, D. Hoffman, R. Skadsen, and B. J. Stefffenson. 1993. A molecular, isozymes, and morphological map of the barley (Hordeum vulgare) genome. Theoritical and Appllied Genetics 86: 705-712.
28- Knapp, S. J., W. W. Stroup, and W. M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192-194.
29- Lander, E. S., and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.
30- Laurie, D. A., N. Pratchett, J. H. Bezant, and J. W. Snape. 1995. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in winter spring barley (Hordeum vulgare L) cross. Genome 38: 575-585.
31- Long, Y., C. Zhang, and J. Meng. 2008. Challenges for QTL analysis in crops. Journal of Crop Science and Bitechnology 11 (1): 7-12.
32- Long, Y., J. Shi, D. Qiu, R. Li, C. Zhang, and J. Wang. 2007. Flowering time QTL analysis with multi-environments in oilseed Brassica and genome-wide alignment with Arabidopsis. Genetics 177: 2433-2444.
33- Mansur, L. M., K. G. Lark, H. Kross, and A. Oliveira. 1993. Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glycine max L.). Theoritical and Appllied Genetics 86: 907-913.
34- Michelmore, R. W., I. Paran, and R. V. Kessali. 1991. Identification of markers linked to diseas resistance genes by bulked segregant analysis: A rapid method detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences 88: 9828-9832.
35- Mohammadi, M., A. Talei, H. Zeinali, M. R. Naghavi, and M. Baum. 2008. Mapping some QTLs controlling drought tolerance in a doubled haploid population. Seed and Seedling 24: 1-15.
36- Mohammadi, M., A. Taleei, H. Zeinali, M. R. Naghavi, S. Ceccarelli, S. Grando, and M. Baum. 2005. QTL Analysis for Phonologic Traits in Doubled Haploid Population of Barley. International Journal of Agriculture and Biology 7 (5): 820-823.
37- Mohammadi, M., and M. Baum. 2008. QTL analysis of morphologic traits in doubled haploid population of barley. Journal of Water and Soil Sience 12 (45): 111-120.
38- Orf, J. H., K. Chase, T. Jarvik, L. M. Mansur, P. B. Cregan, F. R. Adler, and K. G. Lark. 1999. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science 39: 1642-1651.
39- Panse, V. G. 1957. Genetics of quantitative characters in relation to plant breeding. Indian Journal of Genetics 17: 317-328.
40- Peighambari, S. A., B. Yazdi Samadi, A. Nabipour, G. Charmet, and A. Sarrafi. 2005. QTL analysis for agronomic traits in barley doubled haploids population grown in Iran. Plant Science 169: 1008-1013.
41- Quarri, S. 1996. New molecular tools to improve the efficiency of breeding for increased drought resistance. Plant Growth Regulators 20: 167-178.
42- Roberts, E. H., R. J. Summerfeld, J. P. Cooper, and R. H. Ellis, 1988: Environmental control of flowering in barley (H. vulgare L.) I. Photoperiod limits to long day responses, photoperiod-insensitivity phases and the effect of low temperature and short day vernalization. Annals of Botany 62: 127-144.
43- Romagosa, I., F. Han, S. Ullrich, P. M. Hayes, and D. Wesenberg. 1999. Verification of QTL through realized molecular marker-assisted selection responses in a barley cross. Molecular Breeding 5: 143-152.
44- Romagosa, I., S. E. Ullrich, F. Han, and P. M. Hayes. 1996. Use of the additive main effects and multiplicative interaction model in QTL mapping for adaption in barley. Theoritical and Appllied Genetics 93: 30-37.
45- SAS, Institute. 2009. SAS User Guide, SAS/STAT, Version 9.2. SAS Inc., Cary NC., USA.
46- Shahraki, H., B. A. Fakheri, and M. Allahdou. 2013. Genomic regions mapping for some phonological traits associated with salt tolerance in doubled haploid lines of barley (Hordeum vulgare L.). International Journal of Agriculture and Crop Science 6 (7): 403-409.
47- Siahsar, B. A., A. R. Taleei, S. A. Peyghambari, M. R. Naghavi, A. M. Rezaee, and S. A. Kohkan. 2009. QTL Analysis of forage quantity and quality-related traits of barley. Journal of Science and Technology of Agriculture and Natural Resources 13 (47): 195-208. (In Persian).
48- Siahsar, B. A., and M. Narouei. 2010. Mapping QTLs of physiological traits associated with salt tolerance in Steptoe×Morex doubled haploid lines of barley at seedling stage. Journal of Food, Agriculture and Environment 8 (2): 751-759.
49- Siahsar, B. A., S. A. Peighambari, A. R. Taleii, M. R. Naghavi, A. Nabipour., and A. Sarrafi. 2009. QTL analysis of forage quality traits in barley (Hordeum vulgare L.). Cereal Research Communication 37 (4): 479-488.
50- Siahsar, B. A., S. Ganjali, and M. Allahdoo. 2010. Evaluation of drought tolerance indices and their relationship with grain yield of lentil lines in drought-stressed and irrigated environments. Australian Journal of Basic and Appllied Science 4 (9): 4336-4346.
51- Takahashi, R., and S. Yasuda. 1970. Genetics of earliness of growth habit in barley. In: R. Nilan (ed.), Barley Genetics II, 388-408. Washington State University Press, Pullman.
52- Thomas, W. T. B., W. Powell, R. Waugh, K. J. Chalmers, U. M. Barua, P. Jack, V. Lea, B. P. Forster, J. S. Swanston, R. P. Ellis, P. R. Hanson, and R. C. M. Lance. 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theoritical and Appllied Genetics 91: 1037-1047.
53- Turner, A., J. Beales, S. Faure, R. P. Dunford, and D. A. Laurie. 2005. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310: 1031-1034.
54- von Zitzewitz, J., P. Szcs, J. Dubcovsky, L. Yan, N. Pecchioni, E. Francia, A. Casas, T. H. H. Chen, P. M. Hayes, and J. S. Skinner. 2005. Molecular and structural characterization of barley vernalization genes. Plant Molecular Biology 59: 449-467.
55- Wang S., C. J. Basten, and Z. B. Zeng. 2007. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (Available at http://statgen.ncsu.edu/qtlcart/wQTLcart.htm/).
56- Yadav, R. S., F. R. Bidinger, C. T. Hash, Y. P. Yadav, O. P. Yadav, S. K. Bhatnagar, and C. J. Howarth. 2003. Mapping and characterization of QTLE interactions for traits determining grain and stover yield in pearl millet. Theoritical and Appllied Genetics 106: 512-520.
57- Yan, L., D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences. USA, 103: 19581-19586.
58- Yin, X. Y., P. C. Struik, F. A. van Eeuwijk, P. Stam, and J. J. Tang. 2005. QTL analysis and QTL-based prediction of flowering phonology in recombinant inbred lines of barley Journal of Experimental Botany 56 (413): 967-976.
59- Zeng, Z. B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.
60- Zhu, H., G. Briceno, R. Dovel, P. M. Hayes, B. H. Liu, C. T. Liu, and S. E. Ullrich. 1999. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theoritical and Appllied Genetics 98: 772-779.
CAPTCHA Image