بررسی اثر تنش خشکی در مراحل مختلف رشد بر عملکرد دانه، تجمع اسمولیت‌ها و رنگ‌دانه‌های فتوسنتزی در ژنوتیپ‌های سورگوم دانه‌ای (Sorghum bicolor L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان جنوبی

2 دانشگاه زابل

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی

چکیده

یکی از مهم‌ترین راهبردهای گیاهان در پاسخ به تنش‌های غیر‌زنده از‌جمله خشکی، تجمع مواد محلول آلی سازگار است. به‌منظور بررسی اثر تنش خشکی بر عملکرد، اجزای عملکرد دانه و برخی صفات بیوشیمیایی در ژنوتیپ‌های سورگوم دانه‌ای، آزمایشی به‌صورت کرت‌های خرد‌شده در قالب طرح بلوک کامل تصادفی با سه تکرار در سال 1393 در مزرعه مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان جنوبی اجرا شد. تیمارهای تنش خشکی شامل آبیاری متداول (شاهد)، قطع آبیاری در مرحله رشد رویشی (مرحله رؤیت آخرین برگ به‌صورت لوله‌ای) و قطع آبیاری در مرحله رشد زایشی (50 درصد بوته‌ها در مرحله آغاز گلدهی) به‌عنوان عامل اصلی و 10 ژنوتیپ سورگوم دانه‌‌ای شامل: KGS29، MGS2،KGS33 ، سپیده، KGFS27،MGS5 ،KGFS5 ،KGFS17، KGFS13 و KGFS30 به‌عنوان عامل فرعی در نظر گرفته شدند. نتایج نشان داد که تنش خشکی تأثیر منفی معنی‌‌داری بر عملکرد دانه، وزن هزار دانه و تعداد دانه در پانیکول داشته است. ژنوتیپ‌های مورد‌مطالعه نیز از‌ نظر تمام صفات مورد‌ بررسی تفاوت آماری معنی‌دار داشتند که حاکی از وجود تنوع بالا در بین ژنوتیپ‌ها بود. تنش خشکی سبب کاهش محتوای کلروفیل و کاروتنوئیدها و افزایش محتوای کربوهیدرات‌های محلول و پرولین آزاد و نیز درصد قند ساقه (Brix) گردید. از‌ نظر عملکرد دانه ژنوتیپ KGFS13 با میانگین عملکرد 5060 کیلوگرم در هکتار و پس ‌از ‌آن ژنوتیپ KGFS17 قرار گرفت. مقایسه میانگین اثر متقابل ژنوتیپ و تنش خشکی از‌ نظر محتوای پرولین برگ نشان می‌دهد که ژنوتیپ KGSF17 در تیمار تنش خشکی متوسط، بالاترین میزان و ژنوتیپ‌‌های MGS5 و MGS2 در شرایط آبیاری متداول به‌طور مشترک کمترین میزان پرولین را دارا بودند. در‌مجموع نتایج نشان می‌دهد که تجمع پرولین و کربوهیدرات‌های محلول و درصد قند ساقه، در اثر تنش خشکی افزایش و رنگ‌دانه‌های فتوسنتزی کاهش پیدا می‌کند.

کلیدواژه‌ها


1. Ajithkumarand, P., and Panneerselvam, R. 2013. Osmolyte accumulation, photosynthetic pigment and growth of setaria italica under droght stress. Asian Pacific Journal 2: 220-224.
2. Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environment 24: 1337-1344.
3. Ali, M. A., Abbas, A., Niaz, S., Zulkiffal, M., and Ali, S. 2009. Morpho-physiological criteria for drought tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis stages. International Journal of Agricultural Biology 11: 647-680.
4. Anderson, C. M., and Kohorn, B. D. 2001. Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. Plant Physiology 158: 1215-1219.
5. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant physiology 24: 1-15.
6. Bajji, M., Lutts, S., and Kinet, J. M. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf) cultivars performing differently in arid conditions. Plant Science 160: 669-681.
7. Bates, L. S., Waldern, R. P., and Teare, E. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207.
8. Blum, A. 2008. Drought resistance, water use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56: 1159-1168.
9. Bohnert, H. J., Nelson, D. E., and Jensen, R. G. 1995. Adaptations to environmental stresses. Plant Cell, 1099-1111.
10. Fotovat, R., Valizadeh, M., and Toorehi, M. 2007. Association between water-use-efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. Journal of Food and Agricultural Environment 5: 225-227.
11. Gregersen, P. L., and Holm, P. B. 2007. Transcriptome analysis of senescence in the flag leaf of wheat. Plant Biotechnology 5: 192-206.
12. Hong Bo, S., Zongsuom, L., and Mingan, S. 2005. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids. Surf. Bio, 45: 7-13.
13. Hui-Ping, D., Chan-juan, Sh., An-Zhi, W., and Tuxi, Y. 2012. Leaf senescence and photosynthesis in foxtail (Setaria italica L) varieties exposed to drought conditions. Australian Journal of Crop Science 6 (2): 232-237.
14. Jagtap, V., Bhargava, S., Sterb, P., and Feierabend, J. 1998. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. Journal of Experimental Botany 49: 1715-1721.
15. Jaleel, C., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., and Panneerselvam, R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural Biology 11: 100-105.
16. Kariola, T., Brader, G., Li, J., and Palva, E. T. 2005. A damage control enzyme, effects the balance between defense pathway in plant. The Plant Cell, 17. Pp 282-294.
17. Kirnak, H., Kaya, C., TAS, I., and Higgs, D., 2001. The influence of water deficit on vegetative growth, physiology, fruit yield and quality in egg plants. Plant Physiology 27: 34-46.
18. Kishor P. B. K., Hong, Z., Miao, G., Hu, C. A. A., and Verma, D. P. S. 1995. Overexpression of 1pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants. Plant Physiology 108: 1387-1394.
19. Kumar Parida, A., Dagaonkar, V. S., Phalak, M. S., Umalkar, G. V., Laxman, P., and Aurangabadka. 2007. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Report 1: 37-48.
20. Lata, C., Sarita, J. H., Prasad, M., and Sreenivasulu, N. 2011. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars. Protoplasma 248: 817-828.
21. Li, T. H., and Li, S. H. 2005. Leaf responses of micropopagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiology, 25: 495-504
22. Liu, H. P., Dong, B. H., Zhang, Y. Y., Liu, Z. P., and Liu, Y. L. 2004. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Science 166: 1261-1267.
23. Ludlow, M. M., and Muchow, R. C. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Advance Agronomy 43: 107-153.
24. Maman, N., Mason, S. C., Lyon, D. J., and Dhungana, P. 2004. Yield Components of Pearl millet and Grain Sorghum across Environments in the Central Great Plains. Crop Science 44: 2138-2145.
25. Mohammadkhani, N., and Heidari, R. 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. W. Applied Science Journal 3 (3): 448-453.
26. Morgan, P. W. 1990. Effects of abiotic stresses on plant hormone systems, in: Stress Responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, Inc., pp. 113-146.
27. Nayyar, H., and Gupta, D. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environment. Experiment. Botany 58: 106-113.
28. Nageswara, R. R. C., Talwar, H. S., and Wright, G. C. 2001. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using chlorophyll meter. Journal of Agronomy and Crop Science 189: 175-182.
29. Nonami, H. 1998. Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research 111: 373-382.
30. Oncel, I., Keles, Y., and Ustun, A. S. 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution 107: 315-320.
31. Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., and Noitsakis, B. 2002. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grape vines. Plant Science 163: 361-367.
32. Pessarkli, M. 1999. Hand book of Plant and Crop Stress. Marcel Dekker Inc. 697 pp.
33. Prasad, P. V. V., Pisipati, S. R., Mutava, R. N., and Tuinstra, M. R. 2008. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science 48: 1911-1917.
34. Reddy, A. R., Ramachandra, R. K., Chaitanya, V., and Vivekanandan, M. 2004. Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189-1202.
35. Rensburg, L. V., and Kruger, G. H. J. 1994. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J. Plant Physiology 143: 730-737.
36. Saeidi, M., Moradi, F., Ahmadi, Spheri, R., Najafian, G., and Shabani, A. 2010. The effect of terminal water stress on physiological characteristics and sink-source relations in two bread wheat (triticum aestivum) cultivars. Iranian Journal of Crop Science 12 (4): 392-408. (in Persian with English abstract).
37. Sanchez, F. J., De Andres, E. F., Tenorio, J. L., and Ayerbe, L., 2003. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research 86: 81-90.
38. Sato, F., Yoshioka, H., Fujiwara, T., Higashio, H., Uragami, A., and Tokuda, S. 2004. Physiological responses of cabbages plug seedlings to water stress during low-temperature storage in darkness. Horticultureal Science 101: 349-357.
39. Schaffert, R. E., Albuquerque, P. E. P., Duarte, J. O., Garcia, J. O., Gomide, R. L., Guimar es, C. T., Magalh es, P. C., Magalh es, J. V., and Queiroz, V. A. V. 2011. Phenotyping sorghum for adaptation to drought, Part II in Monneveux P. and Ribaut JM.(Eds), Drought phenotyping in crops: from theory to practice. Generation Challenge Programme.
40. Schlegel, H. G. 1956. Die Verwertung organischer sauren durch chlorella in lincht. Planta 47: 510-515.
41. Schlemmer, M. R., Francis, D. D., Shanahan, J. F., and Schepers, J. S. 2005. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal 97: 106-112.
42. Serraj, R., and Sinclair, T. R. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environment 25: 333-341.
43. Shao, H. B., Liang, Z. S., and Shao, M. A. 2005. Change of antioxidative enzymes and MDA among 10 wheat genotypes at maturation stage under soil water deficits. Colloid. Surf. B: Biointerf 45 (2): 7-13.
44. Subbarao, G. V., Nam, N. H., Chauhan, Y. S., and Johansen, C. 2000. Osmotic adjustment, water relations and carbohydrate remobilization in pigeon pea under water deficits. Journal of Plant Physiology 157: 651-659.
45. Thomas, H. 1990. Osmotic adjustment in lolium perenne: its heritability and the nature of solute accumulation. Annals of Botany 66: 521-530.
46. Taiz, L., and Zeiger, E. 2006. Plant Physiology, 4th Ed., Sinauer Associates Inc. Publishers, Massachusetts.
47. Turner, N. C., Wright, G. C., and Siddique, K. H. M. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Advance Agronomy 71: 123-231.
48. Wright, G. C., Nageswara, R. C., and Farquhar, G. D. 1994. Water use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science 34: 92-97.
49. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., and Yoshiba, Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany 56: 1975-1981.
50. Yang, J., and Zang, J. 2006. Grain filling of cereals under soil drying. New Phytology 169: 223-236.
51. Zhu, J. K. 2002. Salt and drought stress signal transduction in plants, Annual Review of Plant Biology 53: 247-273.
CAPTCHA Image