ارزیابی اثر زمان و غلظت محلول‌پاشی پاکلوبوترازول بر تولید و خصوصیات جوانه‌زنی ریزغده‌های سیب‌زمینی (Solanum tuberosum)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

یکی از راه‌های افزایش تولید ریزغده‌های سیب‌زمینی استفاده از تنظیم‌کننده‌های رشد است که نقش مؤثری نیز بر خواب غده‌ها دارند. بدین منظور آزمایشی به‌صورت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی با چهار تکرار در گلخانه تحقیقاتی دانشگاه فردوسی مشهد در سال 1393 اجرا شد. تیمارهای آزمایشی شامل محلول‌پاشی پاکلوبوترازول در دو مرحله آغازش استولون و آغازش غده و شش سطح غلظت (صفر، 20، 40، 60، 80 و 100 میلی‌گرم در لیتر) بود. نتایج بیانگر تأثیر منفی غلظت‌های مختلف پاکلوبوترازول بر صفات تعداد، طول، قطر و وزن ریزغده‌های سیب‌زمینی بود. در تیمار محلول‌پاشی غلظت 20 میلی‌گرم در لیتر پاکلوبوترازول در زمان آغازش استولون، بیشترین تعداد ریزغده در بوته به‌دست آمد، اما در سایر سطوح تأثیر پاکلوبوترازول بر صفات یاد شده منفی بود. به‌طور کلی تأثیر تیمارهای محلول‌پاشی مرحله آغازش غده بر صفات تعداد، طول، قطر و وزن ریزغده‌های سیب‌زمینی، کمتر از آغازش استولون بود. افزایش غلظت پاکلوبوترازول خواب ریزغده‌های سیب‌زمینی را طولانی‌تر و سرعت جوانه‌زنی را کاهش داد. کاربرد پاکلوبوترازول در مرحله آغازش غده بازدارندگی بیشتری بر جوانه‌زنی ریزغده‌ها داشت. به‌طوری‌که در بالاترین غلظت پاکلوبوترازول، مدت زمان رسیدن به 5، 10، 50، 90 و 95 درصد جوانه‌زنی در تیمار محلول‌پاشی آغازش غده نسبت به آغازش استولون به‌ترتیب 11، 13، 17، 19 و 17 درصد افزایش نشان داد. به‌طورکلی محلول‌پاشی پاکلوبوترازول، تأثیر منفی بر تولید ریزغده‌های سیب‌زمینی و جوانه‌زنی آنها داشت.

کلیدواژه‌ها


1. Alexopoulos, A. A., Akoumianakis, K. A., Vemmos, S. N., and Passam, H. C. 2007. The effect of postharvest application of gibberellic acid and benzyl adenine on the duration of dormancy of potatoes produced by plants grown from TPS. Postharvest Biology and Technology 46: 54-62.
2. Balamani, V., and Poovaiah, B. W. 1985. Retardation of shoot growth and promotion of tuber growth of potato plants by paclobutrazol. American Potato Journal 62: 333-338.
3. Bandara, P. M. S., and Tanino, K. K. 1995. Paclobutrazol enhances minituber production in norland potatoes. Journal of Plant Growth Regulator 14: 151-155.
4. Bandara, M. S., Tanino K. K., and Waterer, D. R. 1998. Effect of pot size and timing of plant growth regulator treatments on growth and tuber yield in greenhouse-grown norland and russet burbank potatoes. Journal of Plant Growth Regulator 17: 75-79.
5. Claassens, M. M. J., and Vreugdenhil, D. 2000. Is dormancy breaking of potato tubers the reverse of tuber initiation?. Potato Research 43: 347-369.
6. Farran, I., and Mingo-Castel, A. M. 2006. Potato minituber production using aerophonics: effect of plant density and harvesting intervals. American Journal Potato Research 83: 47-53.
7. Haghighi, M., and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulture 161: 111-117.
8. Harvey, B. M. R., Crothers, S. H., Evans, N. E., and Selby, C. 1991. The use of growth retardants to improve microtuber formation by potato (Solanurn tuberosurn). Plant Cell Tissue Organ Culture 27: 59-64.
9. Kanwal, A., Ali, A., and Shoaib, K. 2006. In Vitro Microtuberization of Potato (Solanum tuberosum L.) Cultivar Kuroda- A New Variety in Pakistan. International Journal of Agriculture and Biology 8 (3): 337-340.
10. Lim, T. H., Cheol, S. Y., Choi, S. P., and Dhital, S. 2004. Application of giberelic acid and paclobutrazol for efficient production of potato (Solanum tuberosum L.) minitubers and their dormancy breaking under soilless culture system. Journal of Korea Society Horticulture Science 45 (4): 189-193.
11. Maleki Lajayer, H., Esmaielpour, B., and Chamani, E. 2011. Hinokitiol and activated charcoal influence the microtuberization and growth of potato (solanum tuberasum cv. Agria) plantlets in vitro. Australian Journal of Crop Science 5 (11): 1481-1485.
12. Ozturk, G., and Yildirim, Z. 2010. A Comparison of field performances of minitubers and micro tubers used in seed potato production. Turkish Journal of Field Crops 15 (2): 141-147.
13. Rashed Mohassel, M. H., Aliverdi, A., and Rahimi, S. 2011. Optimizing dosage of sethoxydim and fenoxaprop-p-ethyl with adjuvants to control wild oat. Industrial Crops and Products 34: 1583-1587.
14. Ritter, E., Angulo, B., Riga, P., Herran, C., Rellosoand J., and San Jose, M. 2001. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Research 44: 127-135.
15. Saadatian, B., and Kafi, M. 2015. Study of nutritional role of silicon nano-particles on physiological characteristics of minituber potato production. Journal of Plant Production Research 22: 173-189. (in Persian with English abstract).
16. Simko, I. 1993. Effects of kinetin, paclobutrazol and their interactions on the microtuberization of potato stem segments cultured in vitro in the light. Plant Growth Regulator 12: 23-27.
17. Simko, I. 1994. Effects of paclobutrazol on in vitro formation of potato micro-tubers and their sprouting after storage. Biology of Plant 36 (1): 15-20.
18. Soltani, A., Galeshi, S., Zeinali, E., and Latifi, N. 2002. Germination, seed reserve utilization and seedling growth of chickpea as affected by salinity and seed size. Seed Science Technology 30: 51-60.
19. Struik, P. C. 2007. The canon of potato science: 25, Minituber. Potato Research 50: 305-308.
20. Vreugdenhil, D., and Sergeeva, L. I. 1999. Gibberellins and tuberization in potato. Potato Research 42: 471-481
21. Vreugdenhil, D. 2007. The canon of potato science. 39. Dormancy. Potato Research 50: 371-373.
22. Tekalign, T., and Hames, P. S. 2004. Response of potato grown under non-inductive condition to paclobutrazol: shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality and dormancy. Plant Growth Regulate 43: 227-236.
23. Tekalign, T., and Hames, P. S. 2005. Response of potato grown in a hot tropical lowland to applied paclobutrazol. II: Tuber attributes. New Zealand Journal of Crop Horticultural Science 33:43-51.
CAPTCHA Image