##plugins.themes.bootstrap3.article.main##

رقیه مردانی کاظم پوستینی علیرضا عباسی احمدعلی پوربابایی

چکیده

لوتئولین یکی از مهم‌ترین فلاونوئیدها است که توسط بذرهای در حال جوانه‌زنی یونجه ترشح می‌شود. در این مطالعه تاثیر لوتئولین بر بیان ژن گره‌زایی دو سویه Rhizobium meliloti با استفاده از پلاسمید حامل پروموتور nodA و ژن lacZ از باکتری Escherichia coli و توسط فعالیت آنزیم β-galactosidase مورد بررسی قرار گرفت. لوتئولین بیان ژن nod را به‌طور معنی‌داری افزایش داد. سپس تاثیر لوتئولین و ترشحات بذر بر گره‌زایی و عملکرد یونجه در شرایط تنش شوری و بدون شوری مورد مطالعه قرار گرفت. برای این منظور، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک کامل تصادفی، در سه تکرار و تیمارهای شوری، ارقام یونجه، سویه باکتری و نوع کاربرد القاکننده‌های خارجی اجرا شد. سطوح شوری شامل: شاهد (بدون شوری) و آب با شوری 15دسی‌زیمنس بر متر، روش به‌کارگیری القاکننده‌ها در سه سطح (پیش‌تیمار سویه‌های ریزوبیوم با لوتئولین، استفاده از لوتئولین و ترشحات بذر به‌طور مستقیم روی سطح بذر و شاهد) دو رقم یونجه (022/G و 019/G) و سویه‌های باکتری شامل سویه حساس و مقاوم به شوری بود. در شرایط شوری تیمار بذرهای یونجه با القاکننده‌ها، وزن خشک اندام هوایی و ریشه و ارتفاع گیاه را به‌طور متوسط 30%، تعداد گره را 47% افزایش داد ولی بر غلظت کلروفیل تاثیر معنی‌داری نداشت. همچنین، شوری موجب افزایش چهار برابری پرولین نسبت به شرایط عادی شد که استفاده از لوتئولین و ترشحات بذر، پرولین را در شرایط شوری به‌ترتیب 66/1 و 35/1 برابر افزایش داد ولی در شرایط عادی کاربرد القاکننده‌ها تاثیر معنی‌داری بر محتوای پرولین نداشت. همچنین، شوری محتوای سدیم برگ (7 برابر) و ریشه (5/8 برابر) را افزایش داد و محتوای پتاسیم این اندام‌ها را به‌ترتیب 29% و 24% کاهش داد که کاربرد لوتئولین و ترشحات بذر تا حدی این تغییرات را تعدیل کرد. در این آزمایش، در تمام صفات مورد مطالعه، اختلاف معنی‌داری بین شاهد و پیش‌تیمار باکتری‌ها با لوتئولین مشاهده نشد. به‌طور کلی، نتایج این آزمایش نشان داد که لوتئولین و ترشحات بذر می‌تواند به‌عنوان القاکننده خارجی در بهبود رشد و گره‌زایی یونجه در شرایط شور و عادی مورد استفاده قرار گیرد.

جزئیات مقاله

کلمات کلیدی

القاکننده خارجی, ترشحات بذر, لوتئولین, ژن lacZ

مراجع
1. Abd Alla, M. H., Bagy, M. K., El-enany, A. S., and Bashandy, S. R. 2014. Activation of Rhizobium tibeticum With Flavonoids Enhances Nodulation, Nitrogen Fixation, and Growth of Fenugreek (Trigonella foenum-graecum L.) Grown in Cobalt-Polluted Soil. Archives of Environmental Contamination and Toxicology 66: 303-315.
2. Arnon, D. I. 1967. Copper anzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Pant Physiology 24: 1-10.
3. Asch, F., Dingkuhn, M., and Droffling, K. 2000. Salinity increases CO2 assimilation but reduces growth in field growth irrigated rice. Plant and Soil 218: 1-10.
4. Bates, L. S., Waldren, R. P., and Teare, I. D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207.
5. Begum, A. A., Leibovitch, S., Migner, P., and Zhang, F. 2001a. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. Journal of Experimental Botany 52: 1537-1543.
6. Begum, A. A., Leibovitch, S., Migner, P., and Zhang, F. 2001b. Inoculation of pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viceae preincubated with naringenin and hesperetin or application of naringenin and hesperetin directly into soil increased pea nodulation under short season conditions. Plant and Soil 237: 71-80.
7. Bouhmouch, I., Souad-Mouhsine, B., Brhada, F., and Aurag, J. 2005. Influence of host cultivars and rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. Journal of Plant Physiology 162: 1103-1113.
8. Bruning, B., and Rozema, J. 2012. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environmental and Experimental Botany 92: 134-143.
9. Campanelli, A., Ruta, C., Morone-Fortunato, I. and Mastro, G. D. 2013. Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection. Central European Journal of Biology 8 (8): 765-776.
10. Cooper, J. E. 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. Journal of Applied Microbiology 103: 1355-1365.
11. Dadkhah, A. 2011. Effect of Salinity on Growth and Leaf Photosynthesis of Two Sugar Beet (Beta vulgaris L.) Cultivars. Journal of Agricultural Science and Technology 13: 1001-1012.
12. Deaker, R., Roughley, R. J., and Kennedy, I. R. 2004. Legume seed inoculation technology. Soil Biology and Biochemistry 36: 1275-1288.
13. Farhangian, S. 2009. The effect of salinity on chlorophyll content of Onobrychis sativa and Medicago sativa. Plant and Ecosystem 18: 77- 89.
14. Farissi, M., Faghire, M., Bargaz, A., Bouizgaren, A., Makoudi, B., Sentenac, H., and Ghoulam, C. 2014. Growth, nutrients concentrations, and enzymes involved in plants nutrition of alfalfa populations under saline conditions. Journal of Agricultural Science and Technology 16: 301-314.
15. Garg, B., Dogra, R. C., and Shama, P. K. 1999. High-efficiency transformation of Rhizobium leguminosarum by electroporation. Applied and Environmental Microbiology 65: 2802-4.
16. Ghasem, F., Poustini, K., Besharati, H., Mohammadi, V. A., Abooei Mehrizi, F., and Goettfert, M. 2012. Pre-incubation of Sinorhizobium meliloti with Luteolin, Methyl jasmonate and Genistein Affecting Alfalfa (Medicago sativa L.) Growth, Nodulation and Nitrogen Fixation under Salt Stress Conditions. Journal of Agricultural Science and Technology 14: 1255-1264.
17. Ghoulam, C., Foursy, A., and Fares, K. 2002. Effects of Salt Stress on Growth, Inorganic Ions and Proline Accumulation in Relation to Osmotic Adjustment in Five Sugar Beet Cultivars. Environmental and Experimental Botany 47: 39-50.
18. Hartwig, U. A., Maxwell, C. A., Joseph, C. M., and Phillips, D. A. 1990. Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Gene sin Rhizobium meliloti. Plant Physiology 92: 116-122.
19. Hirsch, A. M. 1992. Developmental biology of legume nodulation. New Phytologist 122: 211-237.
20. Hungria, M., and Phillips, D. A. 1993. Effects of a seed color mutation on rhizobial nod- gene- inducing flavonoids and nodulation in common bean. Molecular Plant-Microbe Interactions 6: 418-22.
21. Juan, M., Rivero, R. M., Romero, L., and Ruiz, J. M. 2005. Evaluation of Some Nutritional and Biochemical Indicators in Selected Salt Resistance Tomato Cultivars. Environmental and Experimental Botany 54: 193-201.
22. Kapulnik, Y., Joseph, C. M., and Phillips, D. A. 1987. Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiology 84: 1193-1196.
23. Lokhande, V. H., Nikam, T. D., Patade, V. Y., Ahire, M. L., and Suprasanna, P. 2011. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell, Tissue Organ Culture 104: 41-49.
24. Mabood, F., and Smith, D. L. 2005. Pre-incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiologia Plantarum 125: 311-323.
25. Maj, D., Wielbo, J., Marek-Kozaczuk, M., and Skorupska A. 2010. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research 165: 50-60.
26. Meloni D. A., Gulotta, M. R., and Martinez, C. A. 2008. Salinity Tolerance in Schinopsis quebracho Colorado: Seed Germination, Growth, Ion Relations and Metabolic Responses. Journal of Arid Environments 72: 1785-1792.
27. Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
28. Miransari, M., and Smith, D. L. 2009. Alleviating salt stress on soybean (Glycine max (L.) Merr.) Bradyrhizobium japonicum symbiosis, using signal molecule genistein. European Journal of Soil Biology 45: 146-152.
29. Mulligan, J. T., and Long, S. R. 1989. A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics 122: 7-18.
30. Novak, K., Chovance, P., Skrdleta, V., Kropacova, M., Lisa, L., and Nemcova, M. 2002. Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). Journal of Experimental Botany 53 (375): 1735-1745.
31. Oldroyd, G. E. D., and Downie, J. A. 2004. Calcium, kinases and nodulation signalling in legumes. Nature Reviews Molecular Cell Biology 5: 566-576.
32. Pérez-Montaño, F., Guasch-Vidal, B., González-Barroso, S., López-Baena, F. J., and Cubo, T. 2011. Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Research in Microbiology 162: 715-723.
33. Perret, X., Staehelin, C., and Broughton, W. J. 2000. Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews 64: 180-201.
34. Soussi, M., Lluch, C., and Ocana, A. 1999. Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicer arietinum L.) cultivars under salt stress. Journal of Experimental Botany 50: 1701-1708.
35. Tambalo, D. D., Vanderlinde, E. M., Robinson, S., Halmillawewa, A., Hynes, M. F., and Yost, C. K. 2013. Legume seed exudates and Physcomitrella patens extracts influences warming behavior in Rhizobium leguminosarum. Canandian Journal of Microbiology 60: 15-24.
36. Tu, J. C. 1981. Effect of salinity on rhizobium-root-hair interaction nodulation and growth of soybean. Canadian Journal of Plant Science 61: 231-239.
37. Valia, R. Z., Patel, V. K. and Kaadia, P. K. 1993. Physiological response of drumstick (Moringoolifera Lamk) to varying Levels of ESP. Indian Journal of Plant Physiology 36 (4): 261-262.
38. Wang, X., Chen, W., Zhou, Y., Han, J., Zhao, J., Decheng Shi, D., and Yang, C. 2012. Comparison of adaptive strategies of alfalfa (Medicago sativa L.) to salt and alkali stresses. Australian Journal of Crop Science 6 (2): 39-315.
39. Zaat, S. A., Wijffelman, C. A., Mulders, I. H. M., van Brussel, A. A. N., and Lugtenberg, B. J. J. 1988. Root exudates of various host plants of Rhizobium leguminosarum contain different sets of inducers of Rhizobium nodulation genes. Plant Physiology 86: 1298-303.
40. Zahran, H. H., and Sprent, J. I. 1986.Effects of sodium-chloride and polyethyleneglycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167: 303-309.
41. Zeng, Y., Li, L., Yang, R., Yi, X., and Zhang, B. 2015. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress. Scientific Reports 1-11.
42. Zhang, F., and Smith, D. L. 1996. Inoculation of soybean [Glycine max (L) Merrill] with genistein-preincubated Bradyrhizobium japonicum or genistein directly applied into soil increases soybean protein and dry matter yield under short season conditions. Plant and Soil 179: 33-241.
ارجاع به مقاله
مردانیر., پوستینیک., عباسیع., & پورباباییا. (2019). بررسی اثر القاکننده‌های تولید گره بر خصوصیات فیزیولوژیکی، عملکرد و خصوصیات گره‌زایی یونجه (Medicago sativa L.) در شرایط شوری . پژوهشهای زراعی ایران, 18(1), 49-59. https://doi.org/10.22067/gsc.v18i1.71885
نوع مقاله
علمی پژوهشی