اثر مصرف تلفیقی کود نیتروژن و جلبک دریایی بر اجزای عملکرد و عملکرد دانه برنج (Oryza sativa L.) رقم هاشمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 گروه کشاورزی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

کاربرد گسترده کودهای شیمیایی جهت تولید گیاهان زراعی منجر به آسیب­های زیست‌محیطی و اقتصادی شده است، در‌حالی‌که تلفیق کودهای شیمیایی با کودهایی از منابع زیستی و آلی، کاهش مصرف کودهای شیمیایی را به دنبال داشته و در راستای منافع زیست‌محیطی می­‌باشد. به‌منظور تعیین سطح مناسب کود نیتروژن و محلول­‌پاشی جلبک دریایی بر عملکرد و اجزای عملکرد برنج (Oryza sativa L.) رقم هاشمی، آزمایشی در قالب طرح بلوک­‌های کامل تصادفی با سه تکرار در سال­‌های 1399 و 1400 در روستای کیشاکجان و شهرستان رودسر، استان گیلان اجرا شد. عامل اصلی، کود نیتروژن از منبع اوره در پنج سطح (شاهد بدون مصرف کود، 25، 50، 75 و 100 درصد نیتروژن) و عامل فرعی محلول­‌پاشی برگی کود حاوی جلبک دریایی در چهار سطح (شاهد بدون جلبک دریایی، 0.5، یک و 1.5 لیتر در هکتار) بود. نتایج نشان داد که کاربرد سطوح کود نیتروژن و محلول­پاشی جلبک دریایی بر ویژگی­های مورد بررسی معنی­دار بود. به‌طوری‌که بیشترین عدد کلروفیل متر (35)، طول خوشه (29.3 سانتی­‌متر)، وزن هزار دانه (26.3 گرم)، عملکرد شلتوک (4014 کیلوگرم بر هکتار)، عملکرد زیستی (7690.8 کیلوگرم بر هکتار) و شاخص برداشت (59.5 درصد) در کاربرد 75 درصد کود نیتروژن به‌دست آمد. افزون بر این، بیشترین مقدار ویژگی­‌های بیان‌شده در محلول‌­پاشی کود جلبک دریایی با غلظت یک لیتر در هکتار به‌دست آمد که با غلظت 1.5 لیتر تفاوت معنی‌­دار نداشت. نتایج برهم‌کنش تیمارهای آزمایش نیز نشان داد که بیشترین ارتفاع بوته (150 سانتی‌­متر)، تعداد خوشه (29) و تعداد دانه پر (132.4) به‌ترتیب مربوط به کاربرد 100 درصد کود نیتروژن × یک لیتر در هکتار جلبک و 75 درصد کود نیتروژن × یک لیتر در هکتار جلبک بود. کمترین تعداد دانه پوک (4.2) و درصد پوکی دانه (3.5) به‌ترتیب برای کاربرد 75 درصد کود نیتروژن × عدم مصرف کود جلبک و 75 درصد کود نیتروژن × یک لیتر در هکتار کود جلبک ثبت شد. در مجموع، محلول­‌پاشی یک لیتر در هکتار جلبک و استفاده از 50 و 75 درصد کود نیتروژن جهت افزایش عملکرد و اجزای عملکرد رقم هاشمی در منطقه مورد مطالعه تیمار برتر بود.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Aminpanah, H., & Abassian, A. (2016). Effect of crop rotation, Azotobacter chroococcum inoculation and nitrogen rate on rice (Oryza sativa ) paddy yield. Crop Production, 9(3), 211-230. https://doi.org/10.22069/EJCP.2016.10291.1804
  2. Amiri, E., Razavipour, T., Farid, A., & Bannayan, M. (2011). Effects of crop density and irrigation management on water productivity of rice production in Northern Iran: Field and modeling approach. Communications in Soil Science and Plant Analysis, 42(17), 2085-2099. https://doi.org/10.1080/00103624.2011.596238
  3. Ashouri, M. (2012). The effect of water saving irrigation and nitrogen fertilizer on rice production in paddy fields of Iran. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(1), 56-59. https://doi.org/7763/IJBBB.2012.V2.70
  4. Baňoc, D. M. (2022). Ratooning response of lowland rice (Oryza sativa) to foliar application of seaweed extracts grown under high maximum temperatures. SVU-International Journal of Agricultural Sciences, 4(3), 68-78. https://doi.org/10.21608/SVUIJAS.2022.133392.1205
  5. De Carvalho, M. E. A., De Camargo, P. R., Gallo, L. A., & Junior, M. V. C. F. (2014). Seaweed extract provides development and production of wheat. Agrarian, 7(23), 166-170. https://doi.org/15281/zenodo.51607
  6. Deepana, P., Bama, K. S., Santhy, P., & Devi, T. S. (2021). Effect of seaweed extract on rice (Oryza sativa ADT53) productivity and soil fertility in Cauvery delta zone of Tamil Nadu, India. Journal of Applied and Natural Science, 13(3), 1111-1120. https://doi.org/10.31018/jans.v13i3.2906
  7. Food and Agriculture Organization (FAO). (2018) .
  8. Fageria, N. K., Dos Santos, A. B., & De Oliveira, J. P. (2013). Nitrogen-use efficiency in lowland rice genotypes under field conditions. Communications in Soil Science and Plant Analysis, 44(17), 2497-2506. https://doi.org/10.1080/00103624.2013.812732
  9. Fei, L., Pan, Y., Ma, H., Guo, R., Wang, M., Ling, N., Shen, Q., & Guo, Sh. (2024). Optimal organic-inorganic fertilization increases rice yield through source-sink balance during grain filling. Field Crops Research, 308, 1-12. https://doi.org/10.1016/j.fcr.2024.109285
  10. Fu, Y., Yang, G., Pu, R., Li, Z., Li, H., Xu, X., & Zhao, C. (2021). An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. European Journal of Agronomy, 124, 126241. https://doi.org/10.1016/j.eja.2021.126241
  11. Ghosh, M., Swain, D. K., Jha, M. K., Tewari, V. K., & Bohra, A. (2020). Optimizing chlorophyll meter (SPAD) reading to allow efficient nitrogen use in rice and wheat under rice-wheat cropping system in eastern India. Plant Production Science, 23(3), 270-285. https://doi.org/10.1080/1343943X.2020.1717970
  12. Goyal, P., & Thind, S. K. (2016). Photosynthetic attributes and carbohydrates in relation to yield of aerobic rice as influenced by nitrogen and sea weed extract application. Agricultural Research Journal, 53(4), 1-13.
  13. Halvorson, A. D., Snyder, C. S., Blaylock, A. D., & Del Grosso, S. J. (2014). Enhanced‐efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agronomy Journal, 106(2), 715-722. https://doi.org/10.2134/agronj2013.0081
  14. Hatamifar, B., Ashoury, M., Shokri-Vahed, H., & Shahin-Rokhsar, P. (2013). Effects of irrigation and various rates of nitrogen and potassium on yield and yield components of rice plant (Oryza sativa). Persian Gulf Crop Protection, 2(2), 19-25.
  15. Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum). Journal of Applied Phycology, 26, 619-628.
  16. Kumar, A., Singh, K., Verma, P., Singh, O., Panwar, A., Singh, T., & Raliya, R. (2022). Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Scientific Reports, 12(1), 6938. https://doi.org/10.1038/s41598-022-10843-3
  17. Latique, S., Chernane, H., Mansori, M., & El Kaoua, (2013). Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. European Scientific Journal, 9(30). 174-191.
  18. Liu, K., Li, T., Chen, Y., Huang, J., Qiu, Y., Li, S., & Yang, J. (2020). Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Research, 258, 107946. https://doi.org/10.1016/j.fcr.2020.107946
  19. Luo, L., Zhang, Y., & Xu, G. (2020). How does nitrogen shape plant architecture? Journal of Experimental Botany, 71(15), 4415-4427. https://doi.org/10.1093/jxb/eraa187
  20. MacKinnon, S. L., Hiltz, D., Ugarte, R., & Craft, C. A. (2010). Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. Journal of Applied Phycology, 22, 489-494. https://doi.org/10.1007/s10811-009-9483-0
  21. Nayak, P., Biswas, S., & Dutta, D. (2020). Effect of seaweed extracts on growth, yield and economics of kharif rice (Oryza sativa). Journal of Pharmacognosy and Phytochemistry, 9(3), 247-253. https://doi.org/10.22271/phyto.2020.v9.i3d.11269
  22. Nedunchezhiyan, M., & Laxminarayan, K. (2011). Site-specific nutrient management for rice. Orissa Review, 2, 62-64.
  23. Noor, H., Ding, P., Ren, A., Sun, M., & Gao, Z. (2023) Effects of nitrogen fertilizer on photosynthetic characteristics and yield. Agronomy, 13(1550), 1-20. https://doi.org/13390/agronomy13061550
  24. Nowak, R., Szczepanek, M., Kobus-Cisowska, J., Stuper-Szablewska, K., Graczyk, R., & Blaszczyk, K. (2024). Relationships between photosynthetic efficiency and grain antioxidant content of barley genotypes under increasing nitrogen rates. Agriculture, 14(1913), 1-21. https://doi.org/13390/agriculture14111913
  25. Patane, P., & Vibhute, A. (2014). Chlorophyll and nitrogen estimation techniques: A review. International Journal of Engineering Research and Reviews, 2(4), 33-41.
  26. Pawar, S. Y., Radhakrishnan, V. V., & Mohanan, K. V. (2016). The importance of optimum tillering in rice-an overview. South Indian Journal of Biological Sciences, 2(1), 125-127.
  27. Rahman, M. R. (2015). Effectiveness of nitrogen and potassium fertilizer application on lodging habit and yield attributes of Aman rice in Ganges Tidal Flood plain. International Journal of Business, Social and Scientific Research, 3(1), 1-12.
  28. Rajaie, M. (2022). Improving yield, yield components and the absorption of nutrients of wheat by growth stimulants under normal irrigation and drought stress, Iranian Journal of Field Crops Research, 20(2), 147-162. (in Persien with English Abstarct). https://doi.org/22067/JCESC.2022.72226.1083
  29. Ren, Ch., Zhang, X., Reis, S., & Gu, B. (2022). Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability. Agriculture, Ecosystems & Environment, 333, 1-12. https://doi.org/1016/j.agee.2022.107950
  30. Sasikala, M., Indumathi, E., Radhika, S., & Sasireka, R. (2016). Effect of seaweed extract (Sargassum tenerrimum) on seed germination and growth of tomato plant. International Journal of ChemTech Research, 9(09), 285-293.
  31. Sheikhnazari, S., Niknezhad, Y., Fallah, H., & Barari Tari, D. (2022). Effect of application of nitrogen doses with biochar and zinc nanoparticles on quantitative and qualitative characteristic of rice (Oryza sativa ), Iranian Journal of Field Crops Research, 20(3), 349-361. (in Persien with English Abstract). https://doi.org/10.22067/JCESC.2022.75649.1150
  32. Shukla, P. S., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 462648. https://doi.org/10.3389/fpls.2019.00655
  33. Siavoshi, M., Nasiri, A., & Laware, S. L. (2011). Effect of organic fertilizer on growth and yield components in rice (Oryza sativa). Journal of Agricultural Science, 3(3), 217-221. https://doi.org/10.5539/jas.v3n3p217
  34. Sivakamipriya, J., Suresh, S., Manikandan, K., & Ramesh, P. T. (2022). Effect of water soluble fertilizer, micronutrients, humic acid and seaweed extract on growth and yield of rice. Biological Forum – An International Journal, 14(2), 493-498.
  35. Sridhar, S., & Rengasamy, R. (2010). Studies on the effect of seaweed liquid fertilizer on the flowering plant Tagetes erecta in field trial. Advances in Bioresearch, 1(2), 29-34.
  36. Sunarpi, H., Nikmatullah, A., Sunarwidhi, A. L., Jihadi, A., Ilhami, B. T. K., Ambana, Y., & Prasedya, E. S. (2021, March). Combination of inorganic and organic fertilizer in rice plants (Oryza sativa L.) in screen houses. In IOP Conference Series: Earth and Environmental Science (Vol. 712, No. 1, p. 012035). IOP Publishing. https://doi.org/1088/1755-1315/712/1/012035
  37. Szczepanek, M., Wszelaczynska, E., & Poberezny, J. (2018). Effect of seaweed biostimulant application in spring wheat. Agro Life Scientific Journal, 7(1), 1-7.
  38. Wang, N., Fu, F., Wang, H., Wang, P., He, S., Shao, H., & Zhang, X. (2021). Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris). Scientific Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-95792-z
  39. Wang, Y., Ren, T., Lu, J., Ming, R., Li, P., Hussain, S., & Li, X. (2016). Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer. Agronomy Journal, 108(4), 1717-1725. https://doi.org/10.2134/agronj2015.0587
  40. Wen ZhiHui, W. Z., Shen JianBo, S. J., Blackwell, M., Li HaiGang, L. H., Zhao BingQiang, Z. B., & Yuan HuiMin, Y. H. (2016). Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedospher, 26(1), 62-73. https://doi.org/10.1016/S1002-0160(15)60023-6
  41. Xie, H., Wu, K., Iqbal, A., Ali, I., He, L., Ullah, S., & Jiang, L. (2021). Synthetic nitrogen coupled with seaweed extract and microbial inoculants improves rice (Oryza sativa) production under a dual cropping system. Italian Journal of Agronomy, 16(2), 1-10. https://doi.org/10.4081/ija.2021.1800
  42. Xu, G., Fan, X., & Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182. https://doi.org/1146/annurev-arplant-042811-105532
  43. Yang JianChang, Y. J., Zhang Hao, Z. H., & Zhang JianHua, Z. J. (2012). Root morphology and physiology in relation to the yield formation of rice. Journal of Integrative Agriculture, 11(6), 920-926. https://doi.org/10.1016/S2095-3119(12)60082-3
  44. Zayed, B. A., Elkhoby, W. M., Salem, A. K., Ceesay, M., & Uphoff, N. T. (2013). Effect of integrated nitrogen fertilizer on rice productivity and soil fertility under saline soil conditions. Journal of Plant Biology Research, 2(1), 14-24.
  45. Zayed, B. A., Salem, A. K. M., & El Sharkawy, H. M. (2011). Effect of different micronutrient treatments on rice (Oriza sativa) growth and yield under saline soil conditions. World Journal of Agricultural Sciences, 7(2), 179-184.
  46. Zhang, H., Liu, H., Hou, D., Zhou, Y., Liu, M., Wang, Z., & Yang, J. (2019). The effect of integrative crop management on root growth and methane emission of paddy rice. The Crop Journal, 7(4), 444-457. https://doi.org/10.1016/j.cj.2018.12.011
  47. Zhang, W., Wu, L., Wu, X., Ding, Y., Li, G., Li, J., & Wang, S. (2016). Lodging resistance of japonica rice (Oryza Sativa): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 9, 1-11. https://doi.org/10.1186/s12284-016-0103-8
  48. Zodape, S. T., Mukhopadhyay, S., Eswaran, K., Reddy, M. P., & Chikara, J. (2010). Enhanced yield and nutritional quality in green gram (Phaseolus radiata) treated with seaweed (Kappaphycus alvarezii) extract. Journal of Scientific and Industrial Research, 69, 468-471.
CAPTCHA Image