بررسی عملکرد، اجزای عملکرد، خصوصیات مورفولوژیک و پرولین هیبریدهای مختلف ذرت شیرین (Zea mays var. saccharata) در رژیم‌‏های متفاوت آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

به‌منظور مقایسه عملکرد پنج هیبرید ذرت شیرین (Zea mays var. saccharata) نسبت به رژیم‌‏های مختلف آبیاری در زمان گل‌دهی، آزمایشی به‌صورت کرت‌های خرد‌شده در قالب طرح بلوک کامل تصادفی با سه تکرار طی سال 1396 در مزرعه تحقیقاتی دانشگاه تربیت مدرس انجام شد. در این آزمایش، عامل اصلی رژیم‏‌های آبیاری (شاهد، کم‌آبیاری ملایم، کم‌آبیاری متوسط، کم‌آبیاری شدید) و عامل فرعی هیبریدهای ذرت شیرین (مریت، هانی، جنسیس و چیس، و دورگ داخلی دانه طلایی (هیبرید Single Cross 403) بودند. نتایج نشان داد که تیمار آبیاری مطلوب دارای بیشترین عملکرد دانه با میانگین 5159.6 کیلوگرم در هکتار و تنش شدید کم‌آبی دارای کمترین عملکرد دانه با میانگین 3429.2 کیلوگرم در هکتار بود که نسبت به آبیاری مطلوب 33 درصد کمتر بود، در بین ارقام مورد مطالعه، هیبرید جنسیس دارای بیشترین عملکرد دانه بود. هیبرید هانی کمترین عملکرد دانه را در بین ارقام مورد مطالعه نشان داد که نسبت به هیبرید جنسیس 20 درصد کمتر بود. کم­آبیاری شدید دارای کمترین وزن خشک 100 دانه بود که نسبت به شرایط مطلوب آبیاری 20 درصد کمتر بود. بیشترین شاخص سطح برگ در تیمار آبیاری مطلوب و کمترین شاخص سطح برگ در شرایط تنش‌کم‌آبی شدید در هیبرید دو‌رگ داخلی مشاهده شد. در بین ارقام مورد مطالعه، هیبرید هانی بیشترین غلظت پرولین را دارا بود، اگرچه با ارقام جنسیس، چیس و مریت تفاوت معنی‌داری نداشت. بیشترین مقدار عملکرد بیولوژیک در شرایط آبیاری مطلوب و هیبرید هانی به ‌دست آمد، این در حالی است که هیبرید دو‌رگ داخلی در شرایط تنش شدید آبی، کمترین عملکرد بیولوژیک را دارا بود. بیشترین شاخص سطح برگ در تیمار آبیاری مطلوب و کمترین آن در شرایط تنش کم‌آبی شدید و در هیبرید دورگ داخلی دیده شد. با توجه به نتایج به‌دست‌آمده، پیشنهاد می‌شود که در شرایط کم‌آبی، هیبرید جنسیس مورد کشت قرار گیرد.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abedi,, Modarres-Sanavy, S. A. M., & Heidarzadeh, A. (2024). Study of yield and yield components of camelina (Camelina sativa L.) under water deficit stress conditions with the application of zeolite and wood vinegar. Plant Productions, 48(1), 43-50. (in Persian with English abstract). https://doi.org/10.22055/ppd.2024.46482.2155
  2. AghaAlikhani, M., & Mohammadi, Kh. (2018). Sweet corn Agronomic & Genetic Approaches. Tarbiat Modares University Press, Tehran, Iran. 408 pp. (in Persian).
  3. Ahmadi, M., & Bahrani, M. J. (2009). Effect of different nitrogen levels on yield and yield components and oil rate of sesame cultivars in Bushehr region. Journal of Science and Technology of Agriculture and Natural Resources, 13(48), 123-131. (In Persian with English abstract).
  4. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
  5. Catville, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., & Mastrangelo, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1-2), 1-14. https://doi.org/10.1016/j.fcr.2007.07.004
  6. Dadresi, V., Aboutalebian, M. A., & Seyedi, M. (2015). Effect of on-farm seed priming on yield and yield components of two maize cultivars. Journal of Crop Production and Processing, 5(16), 153-162.
  7. Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS ONE, 11(5), e0156362. https://doi.org/1371/journal.pone.0156362
  8. Ding, S., He, F., Tang, W., Du, H., & Wang, H. (2019). Identification of maize CC-type glutaredoxins that are associated with response to drought stress. Genes, 10(8), 610. https://doi.org/10.3390/genes10080610
  9. Dourandish, A., Soleymani Nejad, S., Sabouhi Sabouni, M., & Banayan Aval, M. (2019). The effects of climate change on cropping pattern (Case study: Mashhad plain). Iranian Journal of Agricultural Economics and Development Research, 50(2), 249-263. https://doi.org/10.22059/ijaedr.2019.237998.668461
  10. Hante, H., & Aminiyan, M. M. (2017). The response of late-maturing corn hybrids to the application of potassium sulfate under deficit irrigation conditions. Journal of Crop Ecophysiology, 11(2), 283-302.
  11. Kalamian, S., Modares-Sanavi, A. M., & Sepehri, A. (2005). Effect of water deficit at vegetative and reproductive growth stage in leafy and commercial hybrids of maize. Agricultural Research Water, Soil, and Plant, 5(1), 38-53.
  12. Kamara, A. Y., Menkir, A., Badu-Apraku, B., & Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. The Journal of Agricultural Science, 141(1), 43-50. https://doi.org/10.1017/S0021859603003423
  13. Khalily, M., Moghaddam, M., Kanouni, H., & Asheri, E. (2010). Dissection of drought stress as a grain production constraint of maize in Iran. Asian Journal of Crop Science, 2(2), 60-69. https://doi.org/10.3923/ajcs.2010.60.69
  14. Khavari Khorasani, S. (2020). Practical guide to sweet corn production. Agricultural Research, Education and Extension Organization (AREEO) Press. 78 pp.
  15. Koocheki, A., & Sarmadnia, G. H. (2005). Physiology of crop plants. Ferdowsi University of Mashhad Press.
  16. Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. (2018). P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13(1), 461-471. https://doi.org/1080/17429145.2018.1506516
  17. Mahrokh, A., Nabipour, M., Roshanfekr-Dezfouli, H., & Choukan, R. (2016). The effect of foliar application of auxin and cytokinin hormones on the photosynthetic pigments and proline content of single-cross 704 corn leaves under drought stress. Plant Process and Function, 5(16), 165-179.
  18. Martin, G. A., Viskochil, D., Bollag, G., McCabe, P. C., Crosier, W. J., Haubruck, H., Conroy, L., Clark, R., O'Connell, P., Cawthon, R. M., Innis, M. A., & McCormick, F. (1990). The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell, 63(4), 843-849. https://doi.org/10.1016/0092-8674(90)90150-D
  19. Mi, N., Cai, F., Zhang, Y., Ji, R., Zhang, S., & Wang, Y. (2018). Differential responses of maize yield to drought at vegetative and reproductive stages. Plant, Soil and Environment, 64(6), 260-267. https://doi.org/10.17221/141/2018-PSE
  20. Mojadam, M. (2009). Effect of water stress and management of using nitrogen on distribution of dry matter and some characteristics in maize hybrid cv. KSC 704. Environmental Stress in Crop Sciences, 1(2), 123-136.
  21. Nakhjavani Moghaddam, M. M., Dehghanisanij, H., Akbari, M., & Sadreghaem, S. H. (2010). The effects of deficit irrigation on water use efficiency of new early maize variety (CN.KSC.302) using sprinkler system. Journal of Water and Soil, 24(6), 1237-1244. https://doi.org/10.22067/jsw.v0i0.7509
  22. Nakhjavani-Moghaddam, M. M., Najafi, E., Sadrghaen, S. H., & Farhadi, E. (2011). Effect of different levels of irrigation and plant density on grain yield and yield components and water use efficiency in maize cv. KSC 302. Seed and Plant Production Journal, 27(1), 73-90.
  23. Papari Moghaddam Fard, A., & Bahrani, M. J. (2005). Effect of nitrogen fertilizer rates and plant density on some agronomic characteristics, seed yield, oil and protein percentage in two sesame cultivars. Iranian Journal of Agricultural Science, 36(1), 129-135.
  24. Rafiee, M., Karimi, M., Nurmohamadi, G. H., & Nadian, H. (2009). Effects of drought stress and phosphorus and zinc levels on some morphological and physiological traits of maize. Physiology of Crop Science, 1(1), 1-9.
  25. Rezaei-Sukht-Abnadani, R., Charati Araei, A., Akbari Nodehi, D., & Ramazani, M. (2008). Effect of irrigation and different nitrogen levels on silage dry yield and water use efficiency in Maize cv. KSC 704 in Mazandaran province. Results of Modern Agriculture, 3(2), 122-135.
  26. Rughani, M., Imam Jomeh, S. R., & Kamali, K. (2012). Possibility of designing TDR sensors and evaluating their performance in soil moisture measurement. Journal of Water and Soil Engineering of Iran, 5(17), 53-62.
  27. Salehi-Eskandari, B., Abaspour, J., & Forghani, A. H. (2022). The effect of drought stress on seed germination chlorophyll, proline and antioxidant enzyme activity in two cultivars of rapeseed (Brassica napus L.). Environmental Stresses in Crop Sciences, 15(1), 93-104. https://doi.org/22077/escs.2020.3712.1895
  28. Schwartz, R. C., Bell, J. M., Baumhardt, R. L., Colaizzi, P. D., Hiltbrunner, B. A., Witt, T. W., & Brauer, D. K. (2022). Response of maize hybrids under limited irrigation capacities: Yield and yield components. Agronomy Journal, 114(2), 1338-1352. https://doi.org/10.1002/agj2.21013
  29. Shamohammadi, N., Zare, M., Ordokhani, K., Aref, F., & Sharafzaeh, S. (2024). Grain corn yield under the influence of water deficit stress, biological and chemical fertilizers. Iranian Journal of Field Crop Science, 55(1), 23-36. https://doi.org/22059/ijfcs.2023.352991.654966
  30. Sinaki, J. M., Heravan, E. M., Rad, A. S., Noormohammadi, G. H., & Zarei, G. H. (2007). The effects of water deficit during growth stages of canola (Brassica napus). American-Eurasian Journal of Agricultural and Environmental Science, 4(4), 417-422.
  31. Tahaei, S. A. R., Nasari, M., Soleymani, A., Ghooshchi, F., & Oveysi, M. (2022). Effects of growth regulators and proline amino acid on yield and yield components of single cross 704 maize under drought stress conditions in Isfahan province. Environmental Stresses in Crop Sciences, 15(3), 657-668. https://doi.org/10.22077/escs.2021.3988.1948
  32. Vanclooster, M., Viaene, P., Diels, J., & Christiaens, K. (1994). WAVE: A mathematical model for simulating water and agrochemicals in the soil and vadose environment. Institute for Land and Water Management, Katholieke Universiteit Leuven.
  33. Zhang, Y., Hansen, N., Trout, T., Nielsen, D., & Paustian, K. (2018). Modeling deficit irrigation of maize with the DayCent model. Agronomy Journal, 110(5), 1754-1764. https://doi.org/10.2134/agronj2017.10.0585
CAPTCHA Image