بررسی پاسخ عملکرد دانه گندم (Triticum aestivum L.) به محلول‌پاشی با باکتری آزوسپیریلوم، هورمون بنزیل آمینو پورین و روی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

چکیده

بخش قابل‌توجهی از گندم تحت شرایط دیم تولید می‌شود. بنابراین، حفظ عملکرد و افزایش کیفی دانه گندم ‏تحت کشت دیم ضروری است. دو آزمایش مزرعه‌ای جهت ارزیابی تأثیر محلول‌پاشی با روی، هورمون بنزیل ‌آمینو ‌پورین و محلول‌پاشی با باکتری آزوسپیریلوم بر گندم ‏رقم سرداری تحت کشت دیم انجام گرفت. در آزمایش اول که به‌صورت آزمایش فاکتوریل در قالب طرح بلوک کامل تصادفی اجرا گردید، تأثیر چهار سطح روی (0، 0.2، 0.3 و 0.4 درصد) و دو سطح هورمون (0 و 10 میلی‌گرم در لیتر) بر عملکرد و محتوای روی دانه بررسی گردید. محلول‌پاشی پس از مرحله گرده‌افشانی انجام گرفت. براساس بهترین ترکیب تیماری حاصل از آزمایش اول، تأثیر کاربرد 0.3 درصد روی به‌تنهایی و یا در انواع ترکیب‌های مختلف با آزوسپیریلوم برازیلنس و بنزیل ‌آمینو ‌پورین ‏در سال زراعی 1402-1401 در آزمایشی فاکتوریل بر پایه طرح بلوک کامل تصادفی و در سه تکرار مورد ارزیابی قرار گرفت. تأثیر هورمون بر افزایش عملکرد فقط در سال اول انجام آزمایش معنی‌دار بود. میزان عملکرد دانه تحت کاربرد غلظت‌های 0، 0.2، 0.3 و 0.4 درصد روی به‌ترتیب 2673، 2930، ‏‏2997 و 3086 کیلوگرم دانه در هکتار بود. محلول‌پاشی با روی، محتوای روی دانه را از 23.3 (شاهد) به 27.9 میلی‌گرم در کیلوگرم افزایش داد. در بررسی نتایج تلفیق هورمون با روی و باکتری، بیشترین میزان عملکرد دانه از تلفیق باکتری با روی حاصل گردید. بنابراین، کاربرد باکتری و روی از طریق محلول‌پاشی جهت افزایش عملکرد و محتوای روی گندم می‌تواند مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R. M. A., Alkahtani, J., Dwiningsih, Y., & Elshikh, M. S. (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in Plant Science, 13, https://doi.org/‎10.3389/fpls.2022.932861
  2. Andrejic, G., Gajic, G., Prica, M., Dželetović, Ž., & Rakić, T. (2018). Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed miscanthus × Giganteus plants. Photosynthetica, 56(4), 1249-1258.‎ https://doi.org/10.1007/s11099-018-0827-3
  3. Anwar, S., Khalilzadeh, R., Khan, S., Zaib-un-Nisa, Bashir, R., Pirzad, A., & Malik, A. (2021). Mitigation of drought stress and yield improvement in wheat by zinc foliar spray relates to enhanced water use ‎efficiency and zinc contents. International Journal of Plant Production, 15(3), 377-389. https://doi.org/10.1007/s42106-021-00136-6
  4. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173(4), 677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  5. Cakmak, I. (2008). Enrichment of cereal grains with Zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1), 1-17.
  6. Cakmak, I., & Kutman, U. B. (2018). Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 69(7), 172-180. https://doi.org/10.1111/ejss.12437
  7. Cakmak, I., Kalayci, M., Kaya, Y., Torun, A., Aydin, N., Wang, Y., Arısoy, Z., Erdem, H., Yazi̇ci̇, A. M., Gokmen, O. O., Ozturk, L., & Horst, W. J. (2010). Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 58(16), 9092-9102. https://doi.org/‎1021/jf101197h
  8. Cardozo, P. W., Di Palma, A., Martín, S., Cerliani, C., Espósito, G., Reinoso, H., & Travaglia, C. (2021). Improvement of maize yield by foliar application of Azospirillum brasilense Journal of Plant Growth Regulation 41(1), 1032-1040. https://doi.org/10.1007/s00344-021-10356-9
  9. Chen, W., Zhang, J., & Deng, X. (2019). The spike weight contribution of the photosynthetic area ‎above the upper internode in a winter wheat under different nitrogen and mulching regimes. The Crop Journal, 7(1), 89-100‎. https://doi.org/‎1016/j.cj.2018.10.004
  10. Coleman, J. E. (1998). Zinc enzymes. Current Opinion in Chemical Biology, 2(2), 222-234. https://doi.org/‎1016/s1367-5931(98)80064-1
  11. Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., & Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell and Environment, 42(3), 998-1018. https://doi.org/10.1111/pce.13494
  12. Desta, M. K., Broadley, M. R., McGrath, S. P., Hernandez-Allica, J., Hassall, K. L., Gameda, S., Amedem, T., & Haefele, S. M. (2023). Linking oil adsorption-desorption characteristics with grain zinc concentrations and uptake by teff, wheat and maize in different landscape positions in Ethiopia. Frontire in Agronomy, 5, 1285880. https://doi.org/‎3389/fagro.2023.1285880
  13. Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331-349. https://doi.org/‎1080/07352689.2014.875291
  14. Ferrante, A., Savin, R., & Slafer, G. A. (2012). Differences in yield physiology between modern, well adapted durum wheat cultivars grown under contrasting conditions. Field Crops Research, 136, 52-64. https://doi.org/10.1016/j.fcr.2012.07.015
  15. Ferrante, A., Savin, R., & Slafer, G. A. (2013). Is floret primordia death triggered by floret development in durum ‎wheat? Journal of Experimental Botany, 64(10), 64, 2859-69.‎ https://doi.org/1093/jxb/ert129
  16. Ivanović, D., Dodig, D., Đurić, N., Kandić, V., Tamindžić, G., Nikolić, N., & Savić, J. (2021). Zinc biofortification of bread winter wheat grain by single zinc foliar application. Cereal Research Communications, 49(4), 673-679. https://doi.org/10.1007/s42976-021-00144-2
  17. Jones, J. N. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press.
  18. Kamran, A., Ghazanfar, M., Khan, J. S., Pervaiz, S., Siddiqui, M. H., & Alamri, S. A. (2023). Zinc absorption through leaves and subsequent translocation to the grains of bread wheat after foliar spray. Agriculture, 13(9),1775. https://doi.org/3390/agriculture13091775
  19. Karim, M. R., Zhang, Y., Zhao, R., Chen, X., Zhang, F., & Zou, C. (2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. Journal of Plant Nutrition and Soil Science, 175(1), 142-151. https://doi.org/10.1002/jpln.201100141
  20. Karmollachaab, A., & Gharineh, M. H. (2013). Effect of zinc element on growth, yield components and some physiological characteristics of maize under NaCl salinity stress. Iranian Journal of Field Crops Research, 11(3), 446-453. (in Persian with English abstract). https://doi.org/‎22067/gsc.v11i3.29744
  21. Kashif, M., Sang, Y., Mo, S., Rehman, S. U., Khan, S., Khan, M. R., He, S., & Jiang, C. (2023). Deciphering the biodesulfurization pathway employing marine mangrove bacillus aryabhattai strain NM1-A2 according to whole genome sequencing and transcriptome analyses. Genomics 115(3), 110635. https://doi.org/10.1016/j.ygeno.2023.110635
  22. Klofac, D., Antosovsky, J., & Skarpa, P. (2023). Effect of zinc foliar fertilization alone and combined with trehalose on maize (Zea mays) growth under the drought. Plants, 12(13), 2539. https://doi.org/10.3390/plants12132539
  23. Li, C., Wang, L., Wu, J., Blamey, F. P. C., Wang, N., Chen, Y., Ye, Y., Wang, L., Paterson, D. J., Read, T. L., Wang, P., Lombi, E., Wang, Y., & Kopittke, P. M. (2022). Translocation of foliar absorbed Zn in sunflower (Helianthus annuus) leaves. Front Plant Science, 13, 757048. ‎https://doi.org/10.3389/fpls.2022.757048
  24. Li, G., Li, C., Rengel, Z., Liu, H., & Zhao, P. (2020). Excess Zn-induced changes in physiological parameters and expression levels of TaZips in two wheat genotypes. Environmental and Experimental Botany, 177(2), 104133. https://doi.org/10.1016/j.envexpbot.2020.104133
  25. Li, L. L., Wei, M. M., Li, X., & Wang, X. Y. (2019a). Effects of exogenous 6-BA on the yield of wheat after rice in the Jianghan plain under different shading treatments. Chinese The Journal of Applied Ecology, ‎‎30(11), 3753-3761. https://doi.org/10.13287/j.1001-9332.201911.024
  26. Li, S., Song, M., Duan, J., Yang, J., Zhu, Y., & Zhou, S. (2019b). Regulation of spraying 6-BA in the late jointing stage on the fertile floret development and grain setting in winter wheat. Agronomy, 9, 546. ‎https://doi.org/10.3390/agronomy9090546
  27. Lian, X., Liu, S., Sikandar, A., Kang, Z. L., Feng, Y., Jiang, L., & Wang, Y. (2023). The influence of 6-benzylaminopurine (BAP) on yield responses and photosynthetic physiological ‎indices of soybean. Kuwait Journal of Science, 50(2), 345-352. https://doi.org/10.1016/j.kjs.2022.12.002
  28. Luo, H., Du, B., He, L., He, J., Hu, L., Pan, S., & Tang, X. (2019). Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Scientific Report, 9, 19513. https://doi.org/10.1038/s41598-019-56159-7
  29. Ma, D., Sun, D., Wang, C., Ding, H., Qin, H., Hou, J., Huang, X., Xie, Y., & Guo, T. (2017). Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science, ‎8, https://doi.org/‎10.3389/fpls.2017.00860
  30. Mangena, P. (2022). Evolving role of synthetic cytokinin 6-benzyl adenine for drought stress tolerance in soybean (Glycine max Merr.). Frontiers in Sustainable Food Systems, 6, 992581. https://doi.org/‎10.3389/fsufs.2022.992581
  31. Miralles, D. J., Richards, R., & Slafer, G. A. (2000). Duration of the Stem elongation period influences the number of fertile florets in wheat and barley. Australian Journal of Plant Physiology, 27(10), 931-940.‎ https://doi.org/10.1071/PP00021
  32. Moore, K. G., & Leach, R. W. (1968). The Effect of 6-Benzylaminopurine (benzyladenine) ‎on senescence and chocolate spot (Botrytis fabae) of winter beans (Viciafaba). Annals of ‎Applied Biology, 61, 65-76‎‏.‏‎ https://doi.org/10.1111/j.1744-7348.1968.tb04510.x
  33. Ning, P., Fei, P., Wu, T., Li, Y., Qu, C., Li, Y., Shi, J., & Tian, X. (2021). Combined foliar application of zinc sulphate and selenite affects the magnitude of selenium biofortification in wheat (Triticum aestivum). Food and Energy Security. 11(1), e342. https://doi.org/10.1002/fes3.342
  34. Omer, A. M., Osman, M. S., & Badawy, A. A. (2022). Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Botanical Studies, 63(1), 15. https://doi.org/10.1186/s40529-022-00345-w
  35. Ozturk, L., Yazici, M. A., Yucel, C., Torun, A., Cekic, C., Bagci, A., Özkan, H., Braun, H., Sayers, Z., & Cakmak, I. (2006). Concentration and lcalization of zinc during seed development and germination in wheat. Physiologia Plantarum, 128(1), 144-152. https://doi.org/10.1111/j.1399-3054.2006.00737.x
  36. Pavia, I., Roque, J., Rocha, L., Ferreira, H., Castro, C., Carvalho, A., Silva, E., Brito, C., Gonçalves, A., Lima-Brito, J., & Correia, C. (2019). Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. Plant Physiology and Biochemistry, 140, 27-42. https://doi.org/‎1016/j.plaphy.2019.04.028
  37. Prasad, R. B. (2022). Cytokinin and its key role to enrich the plant nutrients and growth under adverse conditions-An update. Frontiers in Genetics, 13, 1-4. https://doi.org/‎3389/fgene.2022.883924
  38. Puente, M. L., Maroniche, G. A., Panepucci, M., Sabio, Y., García, J., Garcia, J. E., Criado, M. V., Molina, R. M., & Cassan, F. D. (2020). Localization and survival of Azospirillum brasilense Az39 in soybean leaves. Letters in Applied Microbiology, 72(5), 626-633. https://doi.org/10.1111/lam.13444
  39. Ren, B., Zhang, J., Dong, S., Liu, P., & Zhao, B. (2017). Regulations of 6-Benzyladenine (6-BA) on leaf ultrastructure and photosynthetic characteristics of waterlogged summer maize. Journal of Plant Growth Regulation, 36(1-2), 743-754. https://doi.org/‎1007/s00344-017-9677-7
  40. Saha, B. N., Saha, S., Saha, S., Deb Roy, P., Bhowmik, A., & Hazra, G. C. (2020). Zinc (Zn) application methods influences Zn and iron (Fe) bioavailability in brown rice. Cereal Research Communications, 48(93), 293-299. https://doi.org/10.1007/s42976-020-00038-9
  41. Sattar, A., Wang, X., Abbas, T., Sher, A., Ijaz, M., Ul-Allah, S., Irfan, M., Butt, M., Wahid, M. A., Cheema, M., Fiaz, S., Qayyum, A., Ansari, M. J., Alharbi, S. A., Wainwright, M., Ahmad, F., Xie, K., & Zuan, A. T. (2021). Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms. PLoS ONE, 16, e0256984. https://doi.org/‎1371/journal.pone.0256984
  42. Sattar, A., Wang, X., Ul-Allah, S., Sher, A., Ijaz, M., Irfan, M., Abbas, T., Hussain, S., Nawaz, F., Al-Hashimi, A., Al Munqedhi, B. M., & Skalicky, M. (2022). Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum) under water stress. Saudi Journal of Biological Sciences, 29(3), 1699-1706. https://doi.org/10.1016/j.sjbs.2021.10.061
  43. Tsonev, T., & Lidon, F. J. C. (2012). Zinc in plants-An overview. Emirates Journal of Food and Agriculture, 24(4), 322-333.
  44. Umair Hassan, M., Aamer, M., Umer Chattha, M., Tang, H., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Huang, G. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/‎3390/agriculture10090396
  45. Vylicilova, H., Bryksova, M., Matuskova, V., Dolezal, K., Plihalova, L., & Strnad, M. (2020).Naturally occurring and artificial N9-cytokinin conjugates: From synthesis to biological activity and back. Biomolecules, 10(6), 832. https://doi.org/3390/biom10060832
  46. Wu, X., Gong, D., Zhao, K., Chen, D., Dong, Y., Gao, Y., Wang, Q., & Hao, G. (2024). Research and development trends in plant growth regulators. Advanced Agrochem. Advanced Agrochem, 3(1), 99-106. https://doi.org/10.1016/j.aac.2023.11.005
  47. Xia, H., Xue, Y., Liu, D., Kong, W., Xue, Y., Tang, Y., Li, J., Li, D., & Mei, P. (2018). Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 9, 677. https://doi.org/‎3389/fpls.2018.00677
  48. Xie, R., Zhao, J., Lu, L., Brown, P. H., Guo, J., & Tian, S. (2020). Penetration of foliar-applied Zn and its impact on apple plant nutrition status: in vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Horticulture Research, 7(1), 147. https://doi.org/10.1038/s41438-020-00369-y
  49. Yang, D. Q., Luo, Y. L., Dong, W. H., Yin, Y. P., Li, Y., & Wang, Z. L. (2018). Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin. Photosynthetica 56(2), 567-577‎‏.‏ https://doi.org/10.1007/s11099-017-0708-1
  50. Yuan, J., Li, Y., Shan, Y., Tong, H., & Zhao, J. (2023). Effect of magnesium ions on the mechanical properties of soil reinforced by microbially induced carbonate precipitation. Journal of Materials in Civil Engineering, 35(11). https://doi.org/10.1061/JMCEE7.MTENG-15080
  51. Zalewski, W., Orczyk, W., Gasparis, S., & Nadolska-Orczyk, A. (2012). HvCKX2 gene silencing by biolistic or agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biology, 12(1), 206. https://doi.org/10.1186/1471-2229-12-206
  52. Zarae, M. J. (2023). Effect of foliar application of Zinc and exogenous application of proline on yield ‎and grain Zn and P content in a wheat durum cultivar Saji under drought stress ‎ Cereal Biotechnology and Biochemistry, 2(3), 269-287. (in Persian with English abstract). https://doi.org/10.22126/cbb.2024.9987.1061
  53. Zarea, J. (2017). Azospirillum and wheat production. in V. Kumar, M. Kumar, S. Sharma and R. Prasad (eds.) Probiotics in Agroecosystem. Springer, Singapore. Pp. 329-348. https://doi.org/10.1007/978-981-10-4059-7_17
  54. Zarea, M. J., & Karimi, N. (2023a). Grain yield and quality of wheat are improved through post-flowering foliar application of zinc and 6-benzylaminopurine under water deficit condition. Frontiers in Plant Science, 13, https://doi.org/‎10.3389/fpls.2022.1068649
  55. Zarea, M. J., & Karimi, N. (2023b). Zinc-Regulated P5CS and sucrose transporters SUT1B expression to enhance drought stress tolerance in wheat. Journal of Plant Growth Regulation, 42(9), 5831-5841. https://doi.org/10.1007/s00344-023-10968-3
  56. Zhang, G., Zhao, Z., Yin, X., & Zhu, Y. (2021). Impacts of biochars on bacterial community shifts and biodegradation of antibiotics in an agricultural soil during short-term incubation. The Science of The Total Environment 771(6), 144751. https://doi.org/10.1016/j.scitotenv.2020.144751
  57. Zhang, W., Wang, B., Zhang, A., Zhou, Q., Li, Y., Li, L., Ma, S., Fan, Y., & Huang, Z. (2022). Exogenous 6-benzylaminopurine enhances waterlogging and shading tolerance after anthesis by improving grain starch accumulation and grain filling. Frontiers in Plant Science, 13, 1003920. https://doi.org/3389/fpls.2022.1003920
  58. Zhang, W., Wang, J., Huang, Z., Mi, L., Xu, K., Wu, J., Fan, Y., Ma, S., & Jiang, D. (2019). Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Frontiers in Plant Science, 10, https://doi.org/‎10.3389/fpls.2019.00498
  59. Zhang, Z., Huang, J., Gao, Y., Liu, Y., Li, J., Zhou, X., Yao, C., Wang, Z., Sun, Z., & Zhang, Y. (2020). Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress. Journal of Experimental Botany, 71(22), 7241-7256. https://doi.org/‎1093/jxb/eraa380
  60. Zhu, Y., Chu, J., Dai, X., & He, M. (2019). Delayed sowing increases grain number by enhancing spike competition capacity for ‎assimilates in winter wheat. European Journal of Agronomy, 104, 49-62. https://doi.org/‎1016/j.eja.2019.01.006
  61. Zou, C., Zhang, Y., Rashid, A., Ram, H., Savaşlı, E., Arısoy, R. Z., Ortiz-Monasterio, I., Simunji, S., Wang, Z., Sohu, V. S., Hassan, M., Kaya, Y., Onder, O., Lungu, O. I., Mujahid, M. Y., Joshi, A. K., Joshi, A. K., Zelenskiy, Y., Zhang, F., & Cakmak, I. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 361(1-2), 119-130. https://doi.org/‎1007/s11104-012-1369-2
CAPTCHA Image