ارزیابی عملکرد و اجزای عملکرد ارزن معمولی و سویا در کشت مخلوط تحت شرایط تنش کم‌آبی در منطقه همدان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا همدان

2 دانشگاه ایلام

چکیده

به‌منظور بررسی اثر نسبت‌های مختلف کشت مخلوط بر عملکرد و اجزای عملکرد ارزن و سویا تحت شرایط تنش کم‌آبی، آزمایشی در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه بوعلی‌سینا در سال زراعی 95-1394، به‌صورت کرت‌های خردشده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار اجرا شد. کرت اصلی شامل کم‌آبیاری در سه سطح (آبیاری پس از 60، 90 و 120 میلی‌متر تبخیر تجمعی آب از تشت تبخیر کلاس A) و کرت‌های فرعی نسبت‌های کشت مخلوط جایگزینی در پنج سطح 33 درصد ارزن+ 67 درصد سویا، 50 درصد ارزن+ 50 درصد سویا،67 درصد ارزن+ 33 درصد سویا و تک‌کشتی سویا و ارزن بودند. صفات مورد بررسی شامل غلظت کلروفیل، ارتفاع بوته، اجزای عملکرد و عملکرد دانه ارزن معمولی و سویا بودند. نتایج نشان داد که با اعمال تنش کم‌آبی، غلظت کلروفیل برگ ارزن و سویا کاهش یافت. غلظت کلروفیل برگ سویا و ارزن در نسبت‌های کشت مخلوط بالاتر از کشت خالص آن‌ها بود. بیشترین تعداد خوشه در بوته و تعداد دانه در خوشه ارزن در نسبت‌های (50 درصد سویا: 50 درصد ارزن) و (67 درصد سویا: 33 درصد ارزن) در شرایط عدم تنش کم‌آبی و کمترین میزان آن‌ها در کشت خالص ارزن تحت شرایط تنش شدید کم‌آبی مشاهده شد. تنش کم‌آبی موجب کاهش معنی‌دار تعداد غلاف در بوته، تعداد دانه در غلاف و وزن صد دانه سویا شد. نسبت کاشت (50 درصد سویا: 50 درصد ارزن) تعداد غلاف در بوته و تعداد دانه در غلاف سویا را افزایش داد. نسبت کاشت (50 درصد سویا: 50 درصد ارزن) تحت شرایط تنش شدید کم‌آبی، بیشترین نسبت برابری زمین 14/1 را به خود اختصاص داد. به‌طور کلی، می‌توان نتیجه گرفت که بهترین نسبت کشت مخلوط برای به‌دست آوردن حداکثر عملکرد دانه ارزن و سویا نسبت کشت (50 درصد سویا: درصد 50 ارزن) در سطوح مختلف کم‌آبیاری بود.

کلیدواژه‌ها


1. Abdul Jaleel, C., Manivannan, P., Lakshamanan, G. M., Gomathinayagam, M., and Panneerselvam, R. 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and surfaces B: Biointerfaces 61: 298-303.
2. Aboutalebian, M. A., and Khalili, M. 2014. Effect of arbuscular mycorrhizal fungi and Rhizobium japonicum on yield and yield componentsof soybean under water stress. Iranian Journal of Agronomy Science 45 (2): 169-181. (in Persian with English abstract).
3. Agegnnehu, G., Ghizaw, A., and Sinebo, W. 2006. Yield performance and land use efficiency of barley and faba bean mixed cropping in Etthiopian highlands. European Journal of Agronomy 25: 202-207.
4. Allahdadi, M., Shakiba, M. R., Dabbagh Mohammadi Nasab, A., and Amini, R. 2013. Evaluation of competition, yield quantity and quality of soybean (Glycine max L.) Merrill.) and calendula (Calendula officinalis L.) in intercropping systems. Journal of Agroecology 7 (1): 38-51. (in Persian with English abstract).
5. Allen, R.G., Pereira, L. S., Raes, D., and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome.
6. Arnon, I. 1975. Physiological Principles of Dry Land Crop Production. Physiological Aspects of Dryland Farming. US Gupta, ed. Oxfrd Press.
7. Azizi, E., Koocheki, A., Rezvani Moghaddam, P., and Nassiri-Mahallati, N. 2015. Interaction of nutrient resource and crop diversity on resource use efficiency in different cropping systems. Journal of Agroecology 7 (1): 1-19. (in Persian with English abstract).
8. Bagheri Shirvan, M., Zaefarian, F., Bicharanlou, B., and Asadi, G.A. 2014. Evaluation of replacement intercropping of soybean (Glycine max L.) with sweet basil (Ocimum basilicum L.) and borage (Borago officinalis L.) under weed infestation. Journal of Agroecology 6 (1): 70-83. (in Persian with English abstract).
9. Baributsa, D. N., Foster, E. F., Thelen, K., Kravchenko, D. R., and Ngouajio, M. 2008. Corn and cover crop response to corn density in an interseeding system. Agronomy Journal 100: 981-987.
10. Chaves, M. M., Maroco, J. P., Periera, S., Rodrigues, M. L., Ricarddo, C. P., Osorio, M. L., Carvalho, I., Faria, T., and Pinheiro, C. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany 98: 907-916.
11. Daneshniaa, F., Amini, A., and Chaichi, M. R. 2016. Berseem clover quality and basil essential oil yield in intercropping system under limited Irrigation treatments with surfactant. Agricultural Water Management 164: 331-339.
12. Daneshian, J., Jonoubi, P., and Barari Tari, D. 2011. Investigation of water deficit stress on agronomical traits of soybean cultivars in temperate climate. World Academy of Science Engineering and Technology 75: 778-785.
13. Egli, D. B., and Bruening, W. P. 2005. Shade and temporal distribution of pod production and set in soybean. Crop Science 45: 1764-1769.
14. Food and Agriculture Organization. 2010. Biodiversity: Agricultural biodiversity in FAO. Retrieved April 13, 2010, from http://www.fao.org/biodiversity.
15. Ghosh, P. K. 2004. Growth, yield, competition of groundnut cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Research 88: 227-237.
16. Ghosh, P. K., Manna, M., Bandyopadhyay, K., Ajay, A., Tripathi, A., Wanjari, R. H., Hati, K. M., Misra, A. K., Acharya, C. L., and Subba Rao, A. 2006. Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agronomy Journal 98: 1097-1108.
17. Ghosh, P. K., Tripathi, A. K., Bandyopadhyay, K. K., and Manna, M. C. 2009. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. European Journal of Agronomy 31: 43-50.
18. Hea, H., Lei, Y., Tao, D., Neil, W., Turnerb, C., Yangc, R., Jina, Y., Xi, Y., Zhanga, C., Cui, T., Fanga, X., and Li, F. 2017. Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agricultural Water Management 179: 236-245.
19. Jahani, M., Koocheki, A., and Nassiri Mahallati, M. 2008. Comparison of different intercropping arrangements of cumin (Cuminum cyminum L.) and lentil (Lens culinaris M.). Iranian Journal of Field Crops Research 6 (1): 67-78. (in Persian with English abstract).
20. Khajehpour, M. 2007. Principle of Agronomy. Industrial University of Esfahan Publication. (in Persian).
21. Krasova Wade, T., Diouf, O., Ndoye, I., Sall, C. E., Braconier, S., and Neyra, M. 2006. Water-condition effects on rhizobia competition for cowpea nodule occupancy. African Journal of Biotechnology 5 (16): 1457-1463.
22. Lin, C. W., Chen, Y. C., Huang, J., and Tu, T. 2007. Temporal variation of plant height, plant cover and leaf area index in intercropped area of Sichuan, China. Chinese Journal of Ecology 26: 989-994.
23. Lithourgidis, A. S., Vlachostergios, D. N., Dordas, C. A., and Damalas, C. A. 2011. Dry matter yield, nitrogen content, and competition in pea cereal intercropping systems. European Journal of Agronomy 34: 287-294.
24. Maffei, M., and Mucciarelli, A. 2003. Essential oil yield in peppermint/soybean strip intercropping. Field Crops Research 84: 229-240.
25. Mahajan, S., and Toteja, N. 2005. Cold, salinity and drought stress. An overview archives in biochemistry and biophysics. Annals of Botany 444: 139-458.
26. Mazaheri, D., Pasarive, S., and Peyghambari, A. 2002. Study and investigation growth analysis in monoculture and multicultural of soybean cultures. Journal of Pajouhesh and Sazandegi 54: 37-54. (in Persian with English abstract).
27. Mohsenabadi, G., Jahansooz, M. R., Chaichi, M. R., Rahimian Mashhadi, H., Liaghati A. M., and Savaghebi, G. R. 2008. Evaluation of barley-vetch intercrop at different nitrogen rates. Journal of Agriculture Science Technology 10: 23-31.
28. Pour Golestani, H., Esmaeili, M., Moghadam, A., and sattarian, A. 2015. Study of pasture species in intercropping and monoculture in semi-arid of gonbade- kavous. Journal of Desert Ecosystem 8 (4): 93-102. (in Persian with English abstract).
29. Rajasekar, M., Rabert, G. A., and Manivannan, R. 2016. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress. Applied Nanoscience 6: 727-735.
30. Redfearn, D. D., Dwayne, R. B., and Devine, T. E. 1999. Sorghum intercropping effects on yield, morphology, and quality of forage soybean. Crop Science 39: 1380-1384.
31. Rezaei, R., Rezvani Moghaddam, P., Khazaei, H. R., and Mohammad Abadi, A. 2011. Effects of planting patterns (mixed and intercropping) and millet plant density on yield and forage yield components of millet and soybean under Mashhad weather conditions. Iranian Journal of Field Crops Research 9 (1): 50-59. (in Persian with English abstract).
32. Rezaei-Chiyaneh, E. 2016. Evaluation of quantitative and qualitative traits of Black cumin (Nigella sativa L.) and basil (Ocimum basilicum L.) in different intercropping patterns with bean (Phaseolus vulgaris L.). Journal of Agroecology 8 (2): 263-280. (in Persian with English abstract).
33. Saghatoleslami, M., Haravan, M., Nourmohmadi, G., and Darvish, F. 2007. Effect of drought stress in growth different stages on yield and water use efficiency of five millet genotypes in South Khorasan. Science and Technology of Agriculture and Natural Resources 11: 215-225.
34. Sanjani, S., Hosseini, M. B., Chaichi, M. R., and Rezvan beydokhti, S. 2011. Evaluation of yield and yield components in additive intercropping of grain sorghum (Sorghum bicolor L.) and cowpea (Vigna unguiculata L.) under complete and limited irrigation conditions. Journal of Agroecology 3 (1): 25-35. (in Persian with English abstract).
35. Thomas, J., Boote, K. J., Allen, L. H., Gallo-Meagher, M., and Davis, J. M. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Science 43: 1548-1557.
36. Walker, S., and Ogindo, H. O. 2003. The water budget of rainfed maize and bean intercrop. Physics and Chemistry of the Earth 28: 919-926.
37. Willey, R. W. 1990. Resource use in intercropping systems. Agriculture Water Management 17: 215-231.
38. Yadav, O., and Bhatnagar, S. 2001. Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions. Field Crops Research 70: 201-208.
39. Yadav, R. S., Hash, C., Bidinger, F. R., Cavan, G., and Howarth, C. 2002. Quantitative trait loci associated with traits determining grain and stove yield in pearl millet under terminal drought stress conditions. Theoretical and Applied Genetics 104: 67-83.
40. Yang, G., Aiwang, D., Jingsheng, S., Fusheng, L., Zugui, L., Hao, L., and Zhandong, L. 2009. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Research 111 (2): 65-73.
41. Yang, F., Huang, S., Gao, R., Liu, W., Yong, T., Wang, X., Wu, X., and Yang, W. 2014. Growth of soybean seedling in relay strip intercropping systems in relation to light quantity and red: far- red ratio. Field Crops Research 155: 245-253.
42. Yang, N., Wang, C. L., He, W. P., Qu, Y. Z., and Li. Y. S. 2016. Photosynthetic characteristics and effects of exogenous glycine of Chorispora bungeana under drought stress. Photosynthetica 54: 459-467.
43. Yordanov, I., Velikova, V., and Tsonev, T. 2003. Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology 187-206.
44. Zheng, H. F., Chen, L. D., Yu, X. Y., Zhao, X. F., Ma, Y., and Ren, Z. B. 2015. Phosphorus control as an effective strategy to adapt soybean to drought at the reproductive stage: evidence from field experiments across northeast China. Soil Use and Management 31: 19-28.
CAPTCHA Image