اثر قارچ‌های اندوفیت جداشده از گیاهان خانواده کنوپودیاسه بر خصوصیات رشدی و افزایش جذب فسفر گیاه جو (Hordeum vulgare)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه بیوتکنولوژی و به‌نژادی گیاهی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه بیوتکنولوژی و به‌نژادی گیاهی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 گروه علوم خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

قارچ‌های اندوفیت موجب افزایش سطح تماس ریشه‎ها و باعث جذب بیشتر عناصر معدنی به‌طور ویژه عناصر کم‌تحرک مانند فسفر می‌شوند که در نتیجه، رشد گیاه را بهبود می‌دهند. در این پژوهش، هفت جدایه‌ قارچی اندوفیت جداشده از گیاهان خانواده اسفناج (Salsola crassa،Suaeda aegyptica ،Cornulaca leucacantha ،Anabasis setifera ،Salsola arbuscula  و Chenopodium album) در دو بخش جوانه‌زنی در آزمایشگاه و کاشت در گلدان در گلخانه دانشکده کشاورزی دانشگاه فردوسی در سال 1402 در قالب طرح کاملاً تصادفی  برای اثر‌بخشی بر گیاه جو (Hordeum vulgare) مورد بررسی قرار گرفت. سرعت جوانه‌زنی، درصد جوانه‌زنی، ارزش جوانه‌زنی و بنیه بذر در بخش جوانه‌زنی و مساحت برگ، کلروفیل، میزان فسفر شاخساره، وزن خشک و درصد کلونیزه شدن ریشه گیاه با قارچ‌های اندوفیت در بخش گلدانی مورد بررسی قرار گرفتند. درصد کلونیزه شدن ریشه توسط تمام قارچ‌ها به‌جز Alternaria alternaria (19.60 درصد) بالای30 درصد بود. تیمار تلقیح ریشه گیاه با قارچ Aspergillus terreus توانست سرعت جوانه‌زنی (2.95 بذر در روز)، درصد جوانه‌زنی (95 درصد)، ارزش جوانه‌زنی (3.73) و بنیه بذر (13.65) را به‌طور معنی‌دار نسبت به شاهد و دیگر تیمارها افزایش دهد (P≤0.05). علاوه‌براین، در بخش صفات رشدی گیاه، تیمار تلقیح با A. terreus توانست درصد فسفر برگ (0.516 درصد)، مساحت برگ (m2 9.79)، کلروفیل a و  bو وزن خشک شاخساره (mg g-16.40) را به‌طور معنی داری نسبت به دیگر تیمارهای قارچی افزایش دهد (P≤0.05). با توجه به بهبود صفات جوانه‌زنی و رشدی گیاه توسط تیمار با A. terreus، این قارچ می‌تواند گزینه مناسبی برای فرمولاسیون و تولید کود زیستی ‌باشد.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ahadi, N., Safari Sinegani, A. A., & Aletaha, R. S. (2021). Evaluation of capability of fifteen isolates of mycorrhiza-like endophytic fungi on release of phosphorous from phosphorite mineral in the aquatic culture medium. Applied Soil Research, 9(2), 87-101.
  2. Ahmadvand, G., & Hajinia, S. (2018) Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop and Pasture Science, 69(6), 594-605. https://doi.org/10.1071/CP17364
  3. Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip Toxicol, 2, 1-12. https://doi.org/10.2478/v10102-009-0001-7
  4. Aletaha, R., Safari Sinegani, A. A., & Zafari, D. )2018(. A survey on endophytic fungi within roots of Chenopodiaceae species under different environmental conditions. Mycosphere, 9(4), 618-634. https://doi.org/5943/mycosphere/9/4/1
  5. Aletaha, R., & Sinegani, A. A. S. (2020). Water availability in soil affect performance of different root fungal colonizers on metabolism of wheat. Iranian Journal of Science and Technology, Transactions A: Science, 44(4), 919-931.
  6. Aly, A. H., Debbab, A., & Proksch, P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied Microbioly and Biotechnology, 90, 1829-45. https://doi.org/10.5943/mycosphere/9/4/1
  7. Bader, A. N., Salerno, G. L., Covacevich, F., & Consolo, V. F. (2020). Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum ). Journal of King Saud University-Science, 32(1), 867-873. https://doi.org/10.1016/j.jksus.2019.04.002
  8. Baron, N ., Costa, N. T. A., Mochi, D. A., & Rigobelo, E. C. )2018(. First report of Aspergillus sydowii and Aspergillus brasiliensis as phosphorus solubilizers in maize. Annals of Microbiology, 68(12), 863-870. https://doi.org/10.1007/s13213-018-1392-5
  9. Bouzouina, M., Kouadria, R., & Lotmani, B. (2021). Fungal endophytes alleviate salt stress in wheat in terms of growth, ion homeostasis and osmoregulation. Journal of Applied Microbiology, 130(3), 913-925. https://doi.org/10.1111/jam.14804
  10. Brazhnikova, Y. V., Shaposhnikov, A. I., & Sazanova, A. L. (2022). Phosphate mobilization by culturable fungi and their capacity to increase soil P availability and promote barley growth. Current Microbiology, 79, 240 https://doi.org/10.1007/s00284-022-02926-1
  11. Cao, M. A., Liu, R. C., Xiao, Z. Y., Hashem, A., Abd_Allah, E. F., Alsayed, M. F., Harsonowati, W., & Wu, Q. S. (2022). Symbiotic fungi alter the acquisition of phosphorus in Camellia oleifera through regulating root architecture, plant phosphate transporter gene expressions and soil phosphatase activities. Journal of Fungi, 8, 800. https://doi.org/10.3390/jof8080800
  12. Card, S., Johnson, L., Teasdale, S., & Caradus, J. (2016). Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92(8), 19. https://doi.org/10.1093/femsec/fiw114
  13. Dasila, H., Sah, V. K., Jaggi, V., Kumar, A., Tewari, L., Taj, G., ... & Sahgal, M. (2023). Cold-tolerant phosphate-solubilizing Pseudomonas strains promote wheat growth and yield by improving soil phosphorous (P) nutrition status. Frontiers in Microbiology, 14, 1135693.
  14. Diene, O., Wang, W., & Narisawa, K. (2013). Pseudosigmoidea ibarakiensis nov., a dark septate endophytic fungus from a cedar forest in Ibaraki, Japan. Journal of Microbes and Environments, 13002, 387. https://doi.org/10.1264/jsme2.ME13002
  15. Ferreira, A. P., dos Santos Oliveira, J. A., Polonio, J. C., Pamphile, J. A., & Azevedo, J. L. (2023). Recombinants of Alternaria alternata endophytes enhance inorganic phosphate solubilization and plant growth hormone production. Biocatalysis and Agricultural Biotechnology. 51: 102784. https://doi.org/10.1016/j.bcab.2023.102784
  16. Ghoniemy, E. A., El-Khawaga, M. A., El-Aziz, A., Marwa, A., & Abulila, H. I. (2020). Biosynthesis of Plant Growth Hormones (Indol Acetic Acid and Gibberellin) By Salt-Tolerant Endophytic Fungus Aspergillus terreus SQU14026. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 12(2), 111-129. http://doi.org/10.21608/eajbsg.2020.214043
  17. Gu, K., Chen, C. Y., Selvaraj, P., Pavagadhi, S., Yeap, Y. T., Swarup, S., & Naqvi, N. I. (2023). Penicillium citrinum provides transkingdom growth benefits in choy sum (Brassica rapa var. parachinensis). Journal of Fungi, 9(4), 420.
  18. Habibi, S., Maskarbashi, M., & Farzaneh, M. (2015). Effect of mycorrhizal fungus (Glomus spp) on wheat (Triticum aestivum) yield and yield components with regard to irrigation water quality. Iranian Journal of Field Crops Research, 14(3), 85-100. (in Persian with English abstract). https://doi.org/10.22067/gsc.v13i3.51155
  19. Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttila, A. M., Compant, S., Campisano, A., Doring, M., & A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293-320. https://doi.org/10.1128/mmbr.00050-14
  20. Jahandideh, A., Barani Motlagh, M., Dordipoor, E., Ghorbani Nasr Abadi, R., &Nazari, T. (2019). The effects of Co-application of Humic acid and phosphorous fertilizer on vegetative growth indices and phosphorous availability in canola. Applied Soil Research, 8, 68-78. https://doi.org/10.1007/BF00000098
  21. Jiang, H. J., Zhao, Y. , & Pan, Y. T. (2022). The endophytic fungus Phomopsis liquidambaris promotes phosphorus uptake by Arachis hypogaea L. by regulating host auxin, gibberellins, and cytokinins signaling pathways. J Journal of Soil Science and Plant Nutrition, 22, 4913-4927. https://doi.org/10.1007/s42729-022-00970-1
  22. Khare, E. J., & Mishra, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and prospects. Frontier of Microbiology, 9, 1-12. https://doi.org/10.3389/fmicb.2018.02732
  23. Knapp, D. G., Kovács, G. M., Zajta, E., Groenewald, J. Z., & Crous, P. W. (2015). Dark septate endophytic pleosporalean genera from semiarid areas. Molecular Phylogeny and Evolution of Fungi, 35, 87. https://doi.org/10.3767/003158515X687669
  24. Kobae, Y., & Ohtomo, R. (2015). An improved method for brightfield imaging of arbuscular mycorrhizal fungi in plant roots. Soil Science and Plant Nutrition, 62(1), 27-30. https://doi.org/10.1080/00380768.2015.1106923
  25. Kumar A., Maurya, B. M., & Raghuwanshi, R. (2021). The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). Journal of Plant Nutrition, 44, 1942-1956. https://doi.org/10.1080/01904167.2021.1884706
  26. Marschner, H., & Dell, B. )1994(. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89-102. https://doi.org/10.1007/BF00000098
  27. Mathur, P., Chaturvedi, P., & Sharma, C. (2022). Improved seed germination and plant growth mediated by compounds synthesized by endophytic Aspergillus niger (isolate 29) isolated from Albizia lebbeck (L.) Benth. 3 Biotech 12, 271. https://doi.org/10.1007/s13205-022-03332-x
  28. Ortega-Garcia, J. G., Montes-Belmont, R., Rodriguez-Monroy, M., Ramirez-Trujillo, J. , Suarez-Rodriguez, R., & Sepulveda-Jimenez, G. )2015(. Effect of trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae (Amsterdam), 195, 8-16. https://doi.org/10.1016/j.scienta.2015.08.027
  29. Pahalvi, H. N., Rafiya, L., & Rashid, S. (2021). Chemical fertilizers and their impact on soil health. In: GH Dar, KR Hakeem, MA Mehmood, & RA Bhat (eds.). Microbiota and Biofertilizers, Vol 2. New York: Springer, New York. 1–20. https://doi.org/10.1007/978-3-030-61010-4_1
  30. Qi, S., Wang, J., Wan, L., Dai, Z., da Silva Matos, D. M., Du, D., Egan, S., Bonser, S. P., Thomas, T., & Moles, A. T. (2022). Arbuscular mycorrhizal fungi contribute to phosphorous uptake and allocation strategies of solidago canadensis in a phosphorous−deficient environment. Frontiers in Plant Science, 13, 831654. https://doi.org/10.3389/fpls.2022.831654
  31. Rana, K. L., Kour, D., Kaur, T., Devi, R., Yadav, A. N., Yadav, N., Dhaliwal, H. S., & Saxena, A. K.(2020). Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 113(8), 1075-1107. https://doi.org/10.1007/s10482-020-01429-
  32. Sadeghi, A., Farsi, M., Taheri, P., & Safari Sanjani, A. (2022). Priming of barley seeds with filtered culture of fungal species to increase tolerance to salinity (sodium chloride) in the germination stage. 8th International Knowledge Conference and Technology of Agricultural Sciences, Natural Resources and Environment of Iran, Tehran. (in Persian with English abstract). https://civilica.com/doc/1651909
  33. Sembiring, M. (2017). Bacterial and fungi phosphate solubilization effect to increase nutrient uptake and potatoes (Solanum tuberosum ) production on Andisol Sinabung area. Journal Agronomy, 16, 131-137. https://doi.org/10.3923/ja.2017.131.137
  34. Vujanovic, V., St-Arnaud, M., Barabe, D., & Thibeault, G. (2000). Viability testing of orchid seed and the promotion of colouration and germination. Annals of. Botany, 86, 79-86. https://doi.org/10.3390/plants8010005
  35. Waqas, M., Khan, A. L., Hamayun, M., Kamran, M., Kang, S. M., Kim, Y. H., & Lee, I. J. (2012). Assessment of endophytic fungi cultural filtrate on soybean seed germination. African Journal of Biotechnology, 11(85), 15135-15143.
  36. Weggler- Beaton, R. D., & Graham, M. J. (2003(. The influence of low rates of arid- dried on yield and phosphorus and zinc nutrition of wheat and barley. Australian Journal of Soil Research, 41, 293-308. https://doi.org/10.1071/SR02074
  37. Yoo, S., Shin, D., Won, H., Song, J., & Sang, M.(2018)Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae tomato. Mycobiology, 46(2), 147-153. https://doi.org/10.1080/12298093.2018.1475370
  38. Zeng, Q., Dong, J., Lin, X., Zhou, X., & Xu, H. (2024). Isolation and Identification of Acer truncatum Endophytic Fungus Talaromyces verruculosus and evaluation of its effects on insoluble phosphorus absorption capacity and growth of cucumber seedlings. Journal of Fungi, 10(2), 136. https://doi.org/10.3390/jof10020136
  39. Zhao, G., & Zhong, T. (2013). Influence of exogenous IAA and GA on seed germination, vigor and their endogenous levels in Cunninghamia lanceolata. Scandinavian Journal of Forest Research, 28(6), 511-517. https://doi.org/10.1080/02827581.2013.783099
CAPTCHA Image