بررسی تاثیر تغییر اقلیم در آینده نزدیک بر تولید گندم آبی منطقه تربت جام: مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مجتمع آموزش عالی تربت جام

2 مجتمع آموزش عالی کشاورزی و دامپروری تربت جام

3 اداره جهاد کشاورزی تربت جام، خراسان رضوی

چکیده

کشاورزی، که عامل تأمین نیاز غذایی و ثبات اقتصادی و امنیتی هر جامعه‌ای است، می‌تواند تحت تاثیر نوسانات اقلیمی هر منطقه قرار گیرد. بررسی تاثیر اقلیم بر تولید محصولات زراعی همچون گندم که یک محصول راهبردی در تأمین امنیت غذایی جامعه ایرانی است از اهمیت دوچندانی برخوردار است. هدف از این مطالعه پیش‌بینی اثرات تغیر اقلیم در آینده نزدیک بر عملکرد گندم آبی در منطقه تربت‌جام با بیشترین سطح زیر کشت در استان خراسان رضوی بود. در این تحقیق از برنامه MarkSim تحت چهار سناریوی انتشار RCP2.6، RCP4.5، RCP6 و RCP8.5 برای تولید داده‌های اقلیمی در دوره آینده نزدیک (2047-2018) استفاده شد. در نهایت داده‌های اقلیمی خروجی از برنامه MarkSim به‌عنوان داده‌های آب و هوایی ورودی برای اجرای مدل شبیه‌سازی رشد گیاهان زراعی DSSAT مورد استفاده قرار گرفت. نتایج شبیه‌سازی رشد گندم آبی در دوره پایه نشان داد که این گیاه کاهش دوره رشد و افزایش تولید ماده خشک و عملکرد را در دوره 20 ساله اخیر تجربه کرده است. افزایش بارش‌های بهاری و همچنین افزایش دما در طول فصول سرد سال ازجمله دلایل این افزایش بوده است. همچنین افزایش دما در طول فصل سرد سال و افزایش غلظت دی‌اکسید کربن در آینده نزدیک تحت سناریوهای مختلف تغییر اقلیم افزایش حدود 20 تا 25 درصدی تولید دانه گندم را باعث خواهند شد. اگرچه میزان این افزایش تولید در خاک‌های سبک‌تر کمتر از خاک‌های سنگین‌تر منطقه بود. همچنین مشخص گردید، با وجود احتمال کاهش حداقل 300 متر مکعب آب آبیاری در هر هکتار در طول دوره رشد گندم در 30 سال آینده، در نهایت با به‌کار‌گیری سیستم‌های آبیاری با راندمان بالاتر احتمالاً افزایش تولید با تغییرات چندانی روبه‌رو نخواهد شد.

کلیدواژه‌ها


1. Abeysingha, N. S., Singh, M., Islam, A., and Sehgal, V. K. 2016. Climate Change Impacts on Irrigated Rice and Wheat Production in Gomti River Basin of India: a case study. Springer Plus 5 (2): 1250-1270.
2. Ahmadi, F., and Radmanesh, F. 2014. Trend Analysis of Monthly and Annual Mean Temperature of the Northern Half of Iran Over the Last 50 Years. Journal of Water and Soil 28 (4): 855-865. (in Persian).
3. Ashour, E. K., and Al-Najar H. 2012. The Impact of Climate Change and Soil Salinity in Irrigation Water Demand in the Gaza Strip. Journal of Earth Science & Climatic Change 3 (2): 120-127.
4. Babaeyan, E., and Najafi-Nik, Z. 2011. Climate change analysis of Khorasan Razavi province using downscaling of GCM outflow during the period 2089-2020. Journal of Geography and Regional Development 15 (3): 24-32 (in Persian).
5. Brouwer, M., and Heibloem, A. E.1986. Irrigation Water Management: Irrigation Water Needs. FAO Training manual no. 3. Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.
6. Cammarano, D., Rötter, R. P., Asseng, Se., Ewert, F., Wallach, D., Martre, P., Hatfield, J. L., Jones, J. W., Rosenzweig, C., and Wolf, J. 2016. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2. Field Crops Research 198 (11): 80-92.
7. Castex, V., Beniston, M., Calanca, P., Fleury, D., and Moreau, J. 2018. Pest Management under Climate Change: The Importance of Understanding Tritrophic Relations. Science of the Total Environment 616 (3): 397-407.
8. Dong, Z., Pan, Z., He, Q., Wang, J., Huang, L., Pan, Y., Han, G., Xue, X., and Chen, Y. 2018. Vulnerability assessment of spring wheat production to climate change in the Inner Mongolia region of China. Ecological Indicators 85 (2): 67-78.
9. Easterling, W. E. 2011. Guidelines for adapting agriculture to climate change. PP 282-321 in Hillel, D., Rosenzweig, C. (Eds.), Handbook of Climate Change and Agroecosystems: Impacts, Adaptation and Mitigation. Imperial College Press, London, United Kingdom.
10. Einy-Narghese, H., Deihimfar, R., Sofizade, S., Hagheghat, M., and Noori, O. 2015. Prediction of climate change on yield of wheat in Fars province using APSIM model. Journal of Crop production 8 (4): 203-224. (in Persian with English abstract).
11. Eyshi Rezaie, E., and Bannayan, M. 2012. Rainfed wheat yields under climate change in north eastern Iran. Meteorological Applications 19 (4): 346-354.
12. Fischer, G., Frohberg, K., Parry, M. L., and Rosenzweig, C. 1994. Climate change and world food supply, demand and trade: who benefits, who loses? Global Environmental Change 4 (1): 7-23
13. Frisch, M. 2015. Predictivism and old evidence: a critical look at climate model tuning. European Journal for Philosophy of Science 5 (2): 171-190.
14. Ghaemi, M., Raeini Sarjaz, M., and Mosavi, M. 2013. Estimating the crop coefficient and the water requirement of the Gascogne wheat by using energy balance method in Mashhad. Journal of Irrigation and Water Engineering 11 (10): 58-68
15. Intergovernmental Panel on Climate Change (IPCC). 2013. Climate change 2013: the physical science basis. In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
16. Jones, P. G., and Thornton, P. K. 2003. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environment Change 13 (1): 51-59.
17. Kang, Y., Khan Sh., and Ma, X. 2009. Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science 19 (12): 1665-1674.
18. Kimball, B. A., Kobayashi, K., and Bindi, M. 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77 (1) 293-368.
19. Kirby, E. J. M. 1990. Number of main shoot leaves in wheat as affected by temperature. Journal of Agricultural Science 45 (2): 270-279.
20. Knutti, R. 2016. Climate model confirmation: from philosophy to predicting climate in the real world. In: Lloyd L, Winsberg E., eds. Philosophical and Conceptual Issues in Climate Modelling. Chicago: University of Chicago Press.
21. Koocheki, A., and Kamali, G. A., 2010. Climate change and rainfed wheat production in Iran. Iranian Journal of Field Crops Research 8 (3): 508-520. (in Persian with English abstract).
22. Koocheki, A., and Nassiri, M. 2008. Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Field Crops Research 6 (2): 139-153 (in Persian with English abstract).
23. Lal, M., Singh, K. K., Rathore, L. S., Srinivasan, G., and Saseendran, S. A. 1998. Vulnerability of rice and wheat yields in NW India to future changes in climate. Agricultural and Forest Meteorology 89 (2): 101-114.
24. Landau, S., Mitchell, R. A. C., Barnett, V., Colls, J. J., Craigon, J., Moore, K. L., and Payne, R. W. 2000. A parsimonious, multiple-regression model of wheat yield response to environment. Agricultural and Forest Meteorology 101 (2): 151-166.
25. Ludwig, F., and Asseng, S. 2006. Impacts and adaptation to climate change in Western Australian wheat cropping systems. Agricultural Systems 90 (1): 159-179.
26. Lv, Z., Liu, X., Cao, W., and Zhu, Y. 2013. Climate Change Impacts on Regional Winter Wheat Production in Main Wheat Production Regions of China. Agricultural and Forest Meteorology 172 (4): 234-248.
27. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Timothy, R., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. W. 2010. The next generation of scenarios for climate change research and assessment. Nature 463 (7282):747-756.
28. Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., and van Vuuren, D. P. P. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109 (1): 213-241.
29. Mo, X., Mo, Liu, S., and Lin, Z. 2012. Evaluation of an ecosystem model for a wheat-maize double cropping system over the North China Plain. Environmental Modelling & Software 32 (2): 61-73.
30. Mo, X. G., Hu, S. L., Lin, Z. H., Liu, S. X., and Xia, J. 2017. Impacts of Climate Change on Agricultural Water Resources and Adaptation on the North China Plain. Advances in Climate Change Research 8 (2): 93-98.
31. Mosaedi, A., Mohammadi-Moghaddam, S., and Ghabaei-Sough, M. 2015. Modelling Rain-fed Wheat and Barley based on Meteorological Features and Drought Indices. Journal of Water and Soil 29 (3): 730-749. (in Persian with English abstract).
32. Nicholls, N. 1997. Increased Australian wheat yields due to recent climate trends. Nature. 387 (7311): 484-485.
33. Nouri, M., Homaee, M., Bannayan, M., and Hoogenboom, G. 2016.Towards Modelling Soil Texture-Specific Sensitivity of Wheat Yield and Water Balance to Climatic Changes. Agricultural Water Management 177 (2): 248-63.
34. Prasad, P. V. V., Boote, K. J., Allen, Jr., L. H., Sheehy, J. E., and Thomas, J. M. G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95 (2/3), 398-411.
35. Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., and Winter, J. M. 2013. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agricultural Forest Meteorology 170 (4): 166-182.
36. Sharatt, B. S., Knight, C. W., and Wooding, F. 2003. Climatic impact on small grain production in the Subarctic, in Region of the United States. Arctic 56 (3): 219-226.
37. Sommer, R., Glazirina, M., Yuldashev, T., Otarov, A., Ibraeva, M., Martynova, L., Bekenov, M., Kholov, B., Ibragimov, N., Kobilov, R., Karaev, S., M. Sultonov, F., Khasanova, M., Esanbekov, D., Mavlyanov, S., Isaev, S., Abdurahimov, S., Ikramov, R., Shezdyukova, L., and Pauw E. de. 2013. Impact of Climate Change on Wheat Productivity in Central Asia. Agriculture, Ecosystems & Environment 178 (1): 78-99.
38. Subash, N., and Ram Mohan, H. S. 2012. Evaluation of the Impact of Climatic Trends and Variability in Rice–Wheat System Productivity Using Cropping System Model DSSAT over the Indo-Gangetic Plains of India. Agricultural and Forest Meteorology 164 (1): 71-81.
39. Talliee, A., and Bahramy, N. 2003. The effects of rainfall and temperature on the yield of dryland wheat in Kermanshah province. Iranian Journal of Soil and Waters Sciences 17 (1): 9-18.
40. Tao, F. L., and Zhang, Z. 2013. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Mete Agricultural and Forest Meteorolog170 (1): 146-165.
41. Tatari, M. 2008. Dryland wheat yield prediction in Khorasan using climate and edaphic data by applying neural networks. PhD Dissertation, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (in Persian with English abstract).
42. Thorburn, P. J., Boote, K. J., Hargreaves, J. N. G., Poulton, P. L., and Jones, J. W. 2015. Cropping Systems Modelling in AgMIP: A New Protocol-Driven Approach for Regional Integrated Assessments. Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments. Imperial College Press, London, United Kingdom 80-99 pp.
43. Ventrella, D., Charfeddine, M., Moriondo, M., Rinaldi, M., and Bindi, M. 2012. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Regional Environmental Change 12 (2): 407-419.
44. Wolf, J., Evans, L. G., Semenov, M. A., Eckersten, H., and Iglesias, A. 1996. Comparison of wheat simulation models under climate change. I. Model calibration and sensitivity analyses. Climate Research 7 (2): 253-270.
45. Zhang, G., Fei, Y., Liu, C., Feng, H., Yan, M., and Wang, J. 2013. Relationship between decline of shallow groundwater levels and irrigated agriculture on Hufu Plain of North China. Advances Water Science 24 (2): 228-234. (in Chinese).
CAPTCHA Image