بررسی اثرات نانو سیلیکات سدیم متانولی و گلایسین بر عملکرد و کیفیت چغندرقند (Beta vulgaris L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

2 مؤسسه تحقیقات اصلاح و تهیه بذر چغندر قند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

چغندرقند از پراهمیت‌ترین گیاهان صنعتی است که در شرایط آب‌وهوایی متنوع کشت می‌شود و مدیریت تغذیه به‌ویژه کاربرد نانو فناوری نقش به‌سزایی در عملکرد و کیفیت این محصول دارد. بنابراین، به‌منظور بررسی تأثیر نانو سیلیکات سدیم متانولی و اسید آمینه گلایسین در عملکرد و کیفیت چغندرقند، پژوهشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در سال زراعی 98-1397 در سه تکرار، در دو منطقه کرج و قم اجرا شد. تیمارها شامل شش سطح متانول (صفر (عدم مصرف)، 15 و 30 درصد حجمی و نانو سیلیکات سدیم متانولی 5، 10 و 15 درصد حجمی)، همچنین سه سطح اسید آمینه گلایسین (صفر (عدم مصرف)، دو و چهار گرم در لیتر) بود. نتایج مطالعه حاضر بیانگر برتری کشت چغندرقند در منطقه کرج نسبت به قم بود. محلول‌پاشی متانول و گلایسین موجب افزایش عملکرد و ویژگی‌های کیفی چغندرقند نسبت به شاهد (عدم مصرف) شد. علاوه‌براین، کاربرد نانو سیلیکات سدیم متانولی 15 درصد در بهبود کیفیت و عملکرد چغندرقند نسبت به متانول 30 درصد نقش مؤثرتری داشت. مصرف نانو سیلیکات سدیم متانولی 15 درصد حجمی + گلایسین چهار گرم در لیتر، 65 درصد عملکرد ماده خشک ریشه و 50 درصد عملکرد شکر سفید را نسبت به شاهد افزایش داد. بنابراین، کشت چغندرقند در شرایط آب‌وهوایی مشابه با منطقه کرج و محلول­پاشی نانو سیلیکات سدیم متانولی 15 درصد حجمی و گلایسین چهار گرم در لیتر در بهبود عملکرد و کیفیت چغندرقند مؤثرتر از سایر تیمارها بود.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdollahian-Noghabi, M., Sheykhol Eslami, R., & Babayi, (2005). Terms and definitions of quality and quantity of sugar beet, technological, technical abbreviations. Sugar Beet Journal, 21(1), 101-104. (in Persian with English abstract).
  2. Ahmed, N., Zhang, Y., Li, K., Zhou, Y., Zhang, M., & Li, Z. (2019). Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. The Crop Journal, 7(5), 635-650. https://doi.org/10.1016/j.cj.2019.03.004
  3. Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., Yadav, S. K., Das, A., Yadav, V., & Yadav, B. (2022). Nano fertilizers for agricultural and environmental sustainability. Chemosphere Journal, 292(1), 1-19. https://doi.org/10.1016/j.chemosphere.2021.133451
  4. Bagheri Shirvan, M., Asadi, G. A., & Koochecki, A. (2020). Evaluation of quantity and quality characteristics of sugar beet varieties in different sowing date of direct sowing and transplanting in Shirvan and Mashhad. Iranian Journal of Field Crops Research, 17(4), 551-565. (in Persian with English abstract). https://doi.org/20.1001.1.20081472.1398.17.4.4.8
  5. Bashiri, B., Mir Mahoudi, T., & Fotouhi, K. (2015). Evaluation of sugar beet (Beta vulgaris) genotypes for their trait associations under saline conditions. Journal of Crop Ecophysiology, 9(2), 243-258. (in Persian with English abstract).
  6. Bayomi, K. E. M., El-Hashash, E. F., & Moustafa, E. S. A. (2019). Comparison of genetic parameters in non-segregating and segregating populations of sugar beet in Egypt. Asian Journal of Crop Science, 3(1), 1-12. (in Persian with English abstract).
  7. Buchholz, K., Marlander, B., Puke, H., Glattkowski, H., & Thielecke, K. (1995). Neubewertung des technischen Wertes von Zuckerrüben. Zuckerindustrie, 120(1), 113-121.
  8. Dorokhov, Y. L., Sheshukova, E. V., & Komarova, T. V. (2018). Methanol in plant life. Frontiers in Plant Science, 9(1), https://doi.org/10.3389/fpls.2018.01623
  9. Draycott, A. P. (2006). Sugar beet. Blackwell Publishing Ltd. United Kingdom. 514 pp.
  10. Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019). The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production. Applied Sciences, 9(3), 499. https://doi.org/10.3390/app9030499
  11. Elliot, C. L., & G. H. Snyder. (1991). Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Agricultural and Food Chemistry, 39, 1118-1119.
  12. Epstein, E. (1999). Silicon. Annual Review Plant Physiology and Plant Molecular Biology, 50, 641-664.
  13. Fotouhi, K., Majidi, E., Rajabi, A., & Azizinejad, R. (2017). Study of genetic variation for drought tolerance in sugar beet half-sib families. Journal of Sugar Beet, 33(1), 1-16. (in Persian with English abstract).
  14. Gupta, N., & Thind, S. (2017). Grain yield response of drought stressed wheat to foliar application of glycine betaine. Indian Journal of Agricultural Research, 51(3), 287-291. https://doi.org/10.18805/ijare.v51i03.7920
  15. Haghighi, P., Habibi, D., Mozafari, H., Sani, B., & Sadeghishoae, M. (2021). Impact of methanol and glycine betaine on yield and quality of fodder beet genotypes (Beta vulgaris subsp. vulgaris). Agronomy, 11(1), 2122. https://doi.org/10.3390/agronomy11112122
  16. ICUMSA Method GS6-5. (2007). The determination of α-amino nitrogen in sugar beet by the copper method (‘blue number’)—after defecation with basic lead acetate—official—after defecation with aluminium sulphate—official: 3 pp.
  17. Kubadinow, N., & Wieninger, L. (1972). Bestimmung des alpha-aminostickstoffs in zuckerru¨ben und betriebssa¨ften der zuckerproduktion. Zucker, 25, 43-47.
  18. Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Allakhverdiev, S. I., Hurry, V., & Hüner, N. P. (2015). Stress-related hormones and glycine betaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynthesis Research, 126(1), 221-235. https://doi.org/10.1007/s11120-015-0125-x
  19. Leonzio, G., Zondervan, E., & Foscolo, P. U. (2019). Methanol production by CO2 hydrogenation: Analysis and simulation of reactor performance. International Journal of Hydrogen Energy, 44(16), 7915-7933. https://doi.org/10.1016/j.ijhydene.2019.02.056
  20. Lubova, T. N., Islamgulov, D. R., Ismagilov, K. R., Ismagilov, R. R., Mukhametshin, A. M., & Alimgafarov, R. R. (2018). Economic efficiency of sugar beet production. Journal of Engineering and Applied Science, 13(1), 6565-6569. https://doi.org/10.3923/jeasci.2018.6565.6569
  21. Nadali, I., Paknejad, F., Moradi, F., Vazan, S., Tookalo, M., Jami Al-Ahmadi, M., & Pazoki, A. (2010). Effects of methanol on sugar beet (Beta vulgaris). Australian Journal of Crop Science, 4(1), 398-401.
  22. Nadali, I., Paknejad, F., & Ghafari, M. (2014). The effect of methanol as a carbon source on quantitative and qualitative traits of sugar beet under drought stress conditions. Agricultural Research Journal, 6(3), 232-246. (in Persian with English abstract).
  23. Nassirpour, M., & Khademi, M. H. (2020). Evaluation of different cooling technologies for industrial methanol synthesis reactor in terms of energy efficiency and methanol yield: An economic-optimization. Journal of the Taiwan Institute of Chemical Engineers, 113(1), 302-314. https://doi.org/1016/j.jtice.2020.08.029
  24. Nemeata Alla, H. E. A., Nemeata Alla, E. A. E., & Zalat, S. S. (2016). Sugar beet yield and quality as affected by concentration of boron and methanol application. Annals of Agricultural Science, 54(1), 25-34. https://doi.org/10.21608/ASSJM.2016.103906
  25. Orojnia, S., Habibi, D., Fethullah Taleghani, D., Safari Dolatabadi, S. A., Pazoky, A., Moaveni, P., Rahmani, M., & Farshidi, M. (2011). Evaluation of sugar beet yield and yield components of different genotypes under drought stress. Journal of Agriculture and Plant Breeding, 8(1), 144-127. (in Persian with English abstract).
  26. Paknejad, F., Majidiheravan, E., Noor Mohammadi, Q., Siyadat, A., & Vazan, S. (2007). Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. American Journal of Biochemistry and Biotechnology, 5(4), 162-169.
  27. Roode-Gutzmer, Q. I., Kaiser, D., & Bertau, M. (2019). Renewable methanol synthesis. Annual Review of Chemical and Bimolecular Engineering, 6(6), 209-236. https://doi.org/10.1002/cben.201900012
  28. Wieninger, L., & Kubadinow, N. (1971). Beziehungenzwischen rubenanalysen und technischer bewertung von zuckerruben. Zucker, 24(1), 599-604.
  29. Yamada, N., Takahashi, H., Kitou, K., Sahashi, K., Tamagake, H., Tanaka, Y., & Takabe, T. (2015). Suppressed expression of choline mono oxygenase in sugar beet on the accumulation of glycine betaine. Plant Physiology and Biochemistry, 96(1), 217-221.
  30. Zbiec, I., Karczmarczyk, S., & Koszanskin, Z. (1999). Influence of methanol on some cultivated plants. Department of Plant Production and Irrigation. Agricultural University of Szczecin Poland, 73, 217-220.
CAPTCHA Image