بررسی کارآمدی مصرف نیتروژن گیاه در تناوب‌های مختلف زراعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

نیتروژن یک نقش مهم و حیاتی در تولید غذا برای انسان و دام دارد و مدیریت نیتروژن در تولید غذا ضروری است. این پژوهش به منظور بهره‌گیری از مجموعه اقدامات زراعی مطلوب و با هدف بهبود کارآمدی مصرف نیتروژن طی دو سال زراعی 98-1397 و 99-1398 در مزرعه‌ای در دشت کرات تایباد اجرا شد. در این تحقیق عامل تناوب زراعی در چهار سطح آیش‌ـ‌گندم، منداب‌ـ‌گندم، ماش‌ـ‌گندم و ذرت‌ـ‌گندم و عامل کود نیتروژن در سه مقدار 360، 180 و صفر کیلوگرم در هکتار کود اوره به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی اجرا شد. نتایج نشان داد که تناوب زراعی و کود نیتروژن به‌طور معنی‌داری بر محتوای نیتروژن گیاه، شاخص برداشت و کارایی نیتروژن موثر بود. همچنین تیمار منداب-گندم و ماش-گندم بدون مصرف کود نیتروژن به‌ترتیب بهترین کارایی جذب و کارایی زراعی نیتروژن را از خود نشان دادند. همچنین مقدار کارایی جذب و کارایی زراعی در همه تناوب‌های زراعی به‌جز ذرت-گندم در سال دوم نسبت به سال اول بهبود یافت. افزایش حاصلخیزی خاک ناشی از افزایش کربن و نیتروژن آلی و کاهش تلفات آن مهم‌ترین دلایل بهبود کارایی نیتروژن بودند. نتایج به وضوح نشان داد که با وجود افزایش حاصلخیزی خاک ناشی از تناوب زراعی، تامین کود نیتروژن ضروری است، در غیر این صورت باعث کاهش محتوای نیتروژن گیاه و شاخص برداشت نیتروژن خواهد شد.

کلیدواژه‌ها

موضوعات


  1. Alhameid, A., Ibrahim, M., Kumar, S., Sexton, P., & Schumacher, T. (2017). Soil organic carbon changes impacted by crop rotational diversity under no‐till farming in South Dakota, USA. Soil Science Society of America Journal, 81, 868-877. DOI: 2136/sssaj2016.04.0121
  2. Carbon to Nitrogen Ratios in Cropping Systems (USDA). (2011). Retrieved from: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd331820.pdf
  3. Chavarria, D. N., Verdenelli, R. A., Serri, D. L., Restovich, S. B., Andriulo, A. E., Meriles, J. M., & Vargas-Gil, S. (2016). Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. European Journal of Soil Biology, 76, 74-82. DOI: 1016/j.ejsobi.2016.07.002
  4. Coombs, C., Lauzon, J. D., Deen, B., & Van Eerd, L. L. (2017). Legume cover crop management on nitrogen dynamics and yield in grain corn systems. Field Crops Research, 201, 75-85. DOI: 1016/j.fcr.2016.11.001
  5. de Oliveira Silva, A., Ciampitti, I. A., Slafer, G. A., & Lollato, R. P. (2020). Nitrogen utilization efficiency in wheat: A global perspective. European Journal of Agronomy, 114, 126008. DOI: 1016/j.eja.2020.126008
  6. Dikgwatlhe, S. B., Chen, Z. -D., Lal, R., Zhang, H. -L., & Chen, F. (2014). Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil and Tillage Research, 144, 110-118. DOI: 1016/j.still.2014.07.014
  7. Dordas, C. A., & Sioulas, C. (2009). Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius ) as affected by nitrogen fertilization. Field Crops Research, 110, 35-43. DOI: 10.1016/j.fcr.2008.06.011
  8. Duan, J., Shao, Y., He, L., Li, X., Hou, G., Li, S., Feng, W., Zhu, Y., Wang, Y., & Xie, Y. (2019). Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Science of the Total Environment, 697, 134088. DOI: 1016/j.scitotenv.2019.134088
  9. Ebrahimian, A., Kouchaki, A. R., Mahallati, M. N., Khorramdel, S., & Beheshti, A. R. (2012). The effect of different tillage systems and crop residues on the efficiency of nitrogen uptake and consumption in Wheat (Triticum aestivum). Cereal Research, 6. (in Persian).
  10. Gan, Y., Liang, C., Chai, Q., Lemke, R. L., Campbell, C. A., & Zentner, R. P. (2014). Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communications, 5, 1-13. DOI: 1038/ncomms6012
  11. Gaudin, A. C., Janovicek, K., Deen, B., & Hooker, D. C. (2015). Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems. Agriculture, Ecosystems & Environment, 210, 1-10. DOI: 1016/j.agee.2015.04.034
  12. Hosseini, R. S, Gashi, S., Soltani, A., Kalateh, M., & Zahed, M. 2013. The effect of nitrogen fertilizer on nitrogen use efficiency indices in wheat cultivars (Triticum aestivum). Iranian Agricultural Research, 11, 300-306. (in Persian).
  13. Jamshidi, A., Qalavand, A., Sefidkan, F., & Tappeh, M. M. G. (2011). The effect of application of different nutritional systems (organic, chemical, biological and integrated) on the performance and concentration of foliar elements And fennel seeds. Environmental Science, 8, 72-59. (in Persian).
  14. Khamdi, F., Mesgarbashi, M., Hasibi, P., Farzaneh, M., & Zamir, N. A. (2015). The effect of plant residues and different levels of nitrogen fertilizer on the quality and concentration of micronutrients in wheat grain. Applied Agricultural Research, 28, 158-166. (in Persian with English abstract).
  15. Liang, S., Li, Y., Zhang, X., Sun, Z., Sun, N., Duan, Y., Xu, M., & Wu, L. (2018). Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in northern China. Agricultural and Forest Meteorology, 262, 310-321. DOI: 1016/j.agrformet.2018.07.019
  16. Mazzoncini, M., Sapkota, T. B., Barberi, P., Antichi, D., & Risaliti, R. (2011). Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil and Tillage Research, 114, 165-174. DOI: 1016/j.still.2011.05.001
  17. Moshiri, F., Tehrani, M. M., Shahabi, A. A., Keshavarz, P., Khogar, Z., Feyzi, V., Asadi, H., Samavat, S., Sedri, M. H., Rashidi, N., Soadat., S., & Khademi, Z. (2014). Instructions for integrated management of soil and wheat nutrition. Soil and Water Research Institute. (in Persian).
  18. Musyoka, M. W., Adamtey, N., Bünemann, E. K., Muriuki, A. W., Karanja, E. N., Mucheru-Muna, M., Fiaboe, K. K., & Cadisch, G. (2019). Nitrogen release and synchrony in organic and conventional farming systems of the Central Highlands of Kenya. Nutrient Cycling in Agroecosystems, 113, 283-305. DOI: 1007/s10705-019-09978-z
  19. Musyoka, M. W., Adamtey, N., Muriuki, A. W., & Cadisch, G. (2017). Effect of organic and conventional farming systems on nitrogen use efficiency of potato, maize and vegetables in the Central highlands of Kenya. European Journal of Agronomy, 86, 24-36. DOI: 1016/j.eja.2017.02.005
  20. Nasri, R., Kashani, A., Nejad, F. P., Vazan, S., & Barari, M. (2015). Evaluation of the effect of different nitrogen fertilizer cycles and levels on yield, yield components of wheat (Triticum aestivum) and Nitrogen efficiency indicators. Iranian Agricultural Research, 13, 553-569. (in Persian with English abstract).
  21. Pinto, P., Long, M. E. F., & Piñeiro, G. (2017). Including cover crops during fallow periods for increasing ecosystem services: Is it possible in croplands of Southern South America? Agriculture, Ecosystems & Environment, 248, 48-57. DOI: 1016/j.agee.2017.07.028
  22. Powlson, D. S., Whitmore, A. P., & Goulding, K. W. (2011). Soil carbon sequestration to mitigate climate change: a critical re examination to identify the true and the false. European Journal of Soil Science, 62, 42-55. DOI: 1111/j.1365-2389.2010.01342.x
  23. Rathore, S., Kumar, V., Vivek, P., Singh, S., Mahajan, N. C., & Kumar, Y. (2018). Long term effects of tillage and residue management on soil aggregation, soil carbon sequestration and energy relations under rice–wheat cropping system in Typic Ustochrept soil of Uttar Pradesh. Journal of Pharmacognosy and Phytochemistry, 7, 237-247.
  24. Schlesinger, W. H. (2010). On fertilizer‐induced soil carbon sequestration in China's croplands. Global Change Biology, 16, 849-850. DOI: 1111/j.1365-2486.2009.01958.x
  25. Spohn, M. (2020). Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Global Change Biology, 26, 4169-4177. DOI: 1111/gcb.15154
  26. Srivastava, R., Panda, R., Chakraborty, A., & Halder, D. (2018). Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Research, 221, 339-349. DOI: 1016/j.fcr.2017.06.019
  27. Van der Meer, H. (2008). Optimising manure management for GHG outcomes. Australian Journal of Experimental Agriculture, 48, 38-45. DOI: 1071/EA07214
  28. Verma, N. K., & Pandey, B. K. (2013). Effect of varying rice residue management practices on growth and yield of wheat and soil organic carbon in rice-wheat sequence. Global Journal of Science Frontier Research Agriculture and Veterinary Sciences, 13, 32-38.
  29. Xia, , Lam, S. K., Wolf, B., Kiese, R., Chen, D., & Butterbach Bahl, K. (2018). Trade offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology, 24(12), 5919-5932. DOI: 10.1111/gcb.14466
  30. Yadav, M., Kumar, R., Parihar, C., Yadav, R., Jat, S., Ram, H., Meena, R., Singh, M., Verma, A., & Kumar, U. (2017). Strategies for improving nitrogen use efficiency: A review. Agricultural Reviews, 38, 29-40. DOI: 18805/ag.v0iOF.7306
  31. Yang, X., Lu, Y., Ding, Y., Yin, X., & Raza, S. (2017). Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Research, 206, 1-10. DOI: 1016/j.fcr.2017.02.016
  32. Zhang, F., Wang, J., Zhang, W., Cui, Z., Ma, W., Chen, X., & Jiang, R. (2008). Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 45, 915-924.
  33. Zhang, X., Sun, N., Wu, L., Xu, M., Bingham, I. J., & Li, Z. (2016). Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Science of the Total Environment, 562, 247-259. DOI: 1016/j.scitotenv.2016.03.193
CAPTCHA Image