ارزیابی ویژگی‌های فتوسنتزی ژنوتیپ‌های نخود کابلی (Cicer arietinum L.) در تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد اگروتکنولوژی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه بقولات، دانشگاه فردوسی مشهد، مشهد، ایران

3 گروه اگروتکنولوژی و گروه بقولات دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

تنش شوری در بیشتر مواقع بر تولید کمی و کیفیت محصول تأثیر منفی داشته و شناسایی جنبه‌های مختلف آن برای مدیریت کاهش خسارت آن در تولید محصولات زراعی از اهمیت بالایی برخوردار است. این آزمایش به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه دانشگاه فردوسی مشهد در سال 97-1396 اجرا شد. سطوح شوری 5/0 به‌عنوان شاهد و  dSm-18 در کرت‌های اصلی و 17 ژنوتیپ نخود کابلی در کرت‌های فرعی در نظر گرفته شدند. نتایج نشان داد که میزان تبخیر و تعرق با اعمال تنش شوری افزایش و تنها در ژنوتیپ‌های MCC65، MCC95 و MCC298 به‌ترتیب 37، 54 و 63 درصد نسبت به شاهد کاهش یافت. تنش شوری میزان فتوسنتز را در ژنوتیپ‌های MCC12، MCC65، MCC72، MCC92، MCC95، MCC679 و MCC776 افزایش یافت. هدایت روزنه‌ای در ژنوتیپ‌های MCC65 و MCC95 با اعمال شوری به‌ترتیب 28 و 8 درصد افزایش یافت. با اعمال تنش شوری، کارایی مصرف آب در ژنوتیپ‌های MCC95، MCC65، MCC92 و MCC298 به‌ترتیب با 4/3 برابر، 67، 14 و 13 درصد افزایش یافت. میزان زیست‌توده با اعمال تنش شوری در تمامی ژنوتیپ‌ها روند کاهشی داشت. در تمامی ژنوتیپ‌ها با اعمال تنش شوری میزان عملکرد دانه کاهش‌ یافت و بیشترین عملکرد دانه در شرایط شور مربوط به ژنوتیپ‌های MCC65، MCC77، MCC92 و MCC95 به‌ترتیب با 142، 148، 167 و 166 گرم در مترمربع بود. به‌طور‌کلی ژنوتیپ‌های MCC65، MCC77، MCC92، MCC95 در شرایط تنش شوری در بیشتر صفات برتری داشته و حتی در برخی صفات توانسته‌اند در شرایط تنش شوری برخلاف روند سایر ژنوتیپ‌ها در جهت تحمل به تنش عمل کنند.

کلیدواژه‌ها


Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdelaziz, H., Halima El., O., Sven-Erik, J., Nicola, L., Atef, H., Ragab, R., Ahmed, J., & Redouane, Ch. (2014). Chickpea (Cicer arietinum) physiological, chemical and growth responses to irrigation with saline water. Asturalian Journal of Crop Science, 8(5), 646-654.
  2. Asha Dhingra, H. R. (2007). Salinity mediated changes in yield and nutritive value of chickpea (Cicer arietinum) seeds. Indian Journal Plant Physiology, 12, 271-275.
  3. Ashraf, M. Y., Akhtar, K., Hussain, F., & Iqbal, J. (2006). Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pakistan Journal of Botany, 38, 1589-1597.
  4. Beltagi, M. S. (2008). Exogenous ascorbic acid vitamin C induced anabolic changes for salt tolerance in chickpea (Cicer arietinum) plants. African Journal of Plant Science, 2, 118-123.
  5. Dere, S., Gines, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22, 13-17.
  6. Dharamvi, Kumar, A., Kumar, N., & Kumar, M. (2018). Physiological responses of chickpea (Cicer arietinum) genotypes to salinity stress. International Journal of Current Microbiology and Applied Sciences, 7(11), 2380-2388. https://doi.org/10.20546/ijcmas.2018.711.269
  7. FAOSTAT. (2016). Agriculture production. Food and Agriculture Organization of the United Nations. https://faostat.fao.org/site/339/default.aspx.
  8. Flexas, J., Diaz-Espejo, A., Galmés, J., Kaldenhoff, R., Medrano, H., & Ribas-Carbo, M. (2007). Rapid variations of mesophyll concentration conductance in response to changes in CO2 around leaves. Plant Cell and Environment, 30, 1284-1298. https://doi.org/10.1111/j.1365-3040.2007.01700.x
  9. Flowers, T. J., Gaur, P. M., Gowda, C. L. L., Krishnamurthy, L., Samineni, S., Siddique, K. H. M., Turner. N. C., Vadez, V., Varshney, R. K., & Colmer, T. D. (2010). Salt sensitivity in chickpea. Plant Cell and Environment, 33, 490-509. https://doi.org/10.1111/j.1365-3040.2009.02051.x
  10. Gandour, G. (2002). Effect of Salinity on Development and Production of Chickpea Genotypes. PhD. thesis. Faculty of Agriculture, Aleppo University, Aleppo, Syria.
  11. Grewal, H. S. (2010). Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management, 97, 148-156. https://doi.org/10.1016/j.agwat.2009.09.002
  12. Haghighi, M., & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum) at early growth stage. Scientia Horticulture, 161, 111-117. https://doi.org/10.1016/j.scienta.2013.06.034
  13. Hameed, A., Saddiqa A., Nadeem, S. A., Iqbal, N., Atta, B. M., & Shah, T. M. (2012). Genotypic variability and mutant identification in Cicer arietinum by seed storage protein profiling. Pakistan Journal of Botany, 44, 1303-1310.
  14. Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 901-908. https://doi.org/1038/nature01843
  15. Hirich, A., Ragab, R., Choukr-Allah, R., & Rami, A. (2014). The effect of deficit irrigation with treated wastewater on sweet corn: experimental and modelling study using SALTMED model. Irrigation Science, 32, 205-219. https://doi.org/13140/RG.2.1.4734.3529
  16. Kafi, M., Bagheri, A., Nabati, J., Zare Mehrjerdi, M., & Masomi, A. (2011). Effect of salinity on some physiological variables of 11 chickpea genotypes under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture, 1, 55-70. (in Persian with English abstract).
  17. Katerji, N., Van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2000). Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management, 43, 99-109. https://doi.org/10.1016/S0378-3774(99)00048-7
  18. Katerji, N., Van Hoorn, J. W., Hamdy, A., Mastrorilli, M., & Oweis, T. (2005). Salt tolerance analysis of chickpea, faba bean and durum wheat varieties: I. Chickpea and faba bean. Agricultural Water Management, 72, 177-194. https://doi.org/1016/j.agwat.2004.09.015
  19. Krishnamurthy, L., Serraj, R., Hash, A. J., & Reddy, B. V. (2007). Screening sorghum genotypes for salinity tolerant biomass production. Euphytica, 156, 15-24. https://doi.org/1007/s10681-006-9343-9
  20. Lawson, T., Oxborough, K., Morison, J. I. L., & Baker, N. R. (2003). The responses of guard and mesophyll cell photosynthesis to CO2, O2, light and water stress in a range of species are similar. Journal Exprimental Botany, 54, 1743-1752. https://doi.org/1093/jxb/erg186
  21. Medici, L. O., Azevedo, R. A., Canellas, L. P., Machado, A. T., & Pimentel, C. (2007). Stomatal conductance of maize under water and nitrogen deficits. Pesquisa Agropecuária Brasileira, 42, 599-601. https://doi.org/10.1590/S0100-204X2007000400020
  22. Meloni, D. A., Olivia, M. A., Martinez, C. A., & Cambraia, J. (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environment Experimental Botany, 49, 69-76. https://doi.org/1016/S0098-8472(02)00058-8
  23. Mudgal, V., Madaan, N., Mudgal, A., & Mishra, S. (2009). Changes in growth and metabolic profile of chickpea under salt stress. Journal of Applied Biosciences, 23, 1436-1446.
  24. Mundree, S. G., Baker, B., Mowla, S., Peters, S., Marais, S., Willigen, C. V., Govender, K., Maredza, A., Muyanga, S., Farrant, J. M., & Thomson, J. A. (2002). Physiological and molecular insights into drought tolerance. African Journal of Biotechnology, 1, 28-38. https://doi.org/5897/AJB2002.000-006
  25. Munns, R., & Tester, M. (2008). Mechanism of salinity tolerance. Annual Reviews of Plant Biology, 59, 65181. https://doi.org/1146/annurev.arplant.59.032607.092911
  26. Murumkar, C., & Chavan, V. P. D. (1986). Influence of salt stress on biochemical processes in chickpea. Cicer arietinum Plant and Soil, 96, 439-43.
  27. Nabati, J., Kafi, M., Khaninejad, S., Masomi, A., Zare Mehrjerdi, M., & Keshmiri, E. (2015). Evaluation salinity stress on some photosynthetic characteristics in five Kochia (Kochia scoparia) Schra. ecotypes. Journal of Crop Production, 8(2), 49-77. (in Persian with English abstract).
  28. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effect on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  29. Qureshi, A. S., Qadir, M., Heydari, N., Turral, H., & Javadi, A. (2007). A review of management strategies for salt-proneland and water resources in Iran. Colombo, Sri Lanka: International Water Management Institute. 30p. (IWMI Working Paper 125).
  30. Rasool, S., Ahmad, A., Siddiqi, T. O., & Ahmad, P. (2013). Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiologia Plantarum, 35, 1039-1050. https://doi.org/1007/s1738-012-1142-4
  31. Roy, F., Boye, J. I., & Simpson, B. K. (2010). Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Research International, 43(2), 432-442. https://doi.org/1016/j.foodres.2009.09.002
  32. Samineni, S., Siddique, K. H. M., Gaur, P. M., & Colmer, T. D. (2011). Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum): Podding is a particularly sensitive stage. Environmental and Experimental Botany, 71, 260-268. https://doi.org/10.1016/j.envexpbot.2010.12.014
  33. Saxena, A. K., & Rewari, R. B. (1992). Differential responses of chickpea (Cicer arietinum) rhizobium combinations to saline soil-conditions. Biology and Fertility of Soils, 13, 31-34.
  34. Shimada, T., Sugano, S. S., & Hara-Nishimura, I. (2011). Positive and negative peptide signals control stomatal density. Cellular and Molecular Life Sciences, 68, 2081-2088. https://doi.org/1007/s00018-011-0685-7
  35. Singla, R., & Garg, N. (2005). Influence of salinity on growth and yield attributes in chickpea cultivars. Turkish Journal of Agriculture and Forestry, 29, 231-235.
  36. Sudhir, P., & Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42, 481-486. https://doi.org/10.1007/S11099-005-0001-6
  37. Sultan, N., Ikeda, T., & Itoh, R. (1999). Effect NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Exprimental Botany, 42, 211-220. https://doi.org/1016/S0098-8472(00)00049-6
  38. Taiz, L., & Zeiger, E. (2010). Plant physiology 5th Ed. Sunderland, MA: Sinauer Associates, 464.
  39. Varshney, R. K., Hiremath, P. J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A. A., Vadez, V., Xiao, Y., Srinivasan, R., & Gaur, P. M. (2009). A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum). BMC Genomics, 10, 523-540. https://doi.org/10.1186/1471-2164-10-523
  40. White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: A review. Annals of Botany, 88, 967-988. https://doi.org/10.1006/anbo.2001.1540
  41. Zaccardelli, M., Sonnante, G., Lupo, F., Piergiovanni, A. R., Leghetti, G., Sparvoli, F., & Lioi, L. (2013). Characterization of Italian chickpea (Cicer arietinum) germplasm by multidisciplinary approach. Genetics Resources and Crop Evolution, 60, 865-877. https://doi.org/10.1007/s10722-012-9884-9
  42. Zhang, G., & Deng, C. (2012). Gas exchange and chlorophyll fluorescence of salinity-alkalinity stressed Phragmites australis seedlings. Journal of Food, Agriculture and Environment, 10, 880-884.
CAPTCHA Image