تاثیر برخی کودهای زیستی و نانواکسید آهن و سیلیکون بر عملکرد و اجزای پر شدن دانه تریتیکاله در شرایط محدودیت آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

به‌منظور بررسی تاثیر کودهای زیستی و نانواکسید آهن و سیلیکون بر عملکرد و اجزای پر شدن دانه تریتیکاله در شرایط محدودیت آبی، آزمایشی به‌صورت فاکتوریل در قالب طرح پایه بلوک کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1400 اجرا شد. عامل‌های مورد بررسی شامل آبیاری در سه سطح (آبیاری کامل در طول دوره رشدی به‌عنوان شاهد، قطع آبیاری در 50% مراحل تورم غلاف برگ پرچم (غلاف رفتن) براساس کد 43 مقیاس BBCH  و ظهور سنبله بر اساس کد 55 مقیاس BBCH به‌ترتیب به‌عنوان محدودیت شدید و ملایم آبی)، کاربرد کودهای زیستی در چهار سطح (عدم کاربرد کودهای زیستی به‌عنوان شاهد، کاربرد Azospirillum، Pseudomonas، کاربرد توام Azospirillum و Pseudomonas) و محلول‌پاشی نانوذرات در چهار سطح (محلول‌پاشی با آب به‌عنوان شاهد، محلول‌پاشی نانواکسیدآهن، نانوسیلیکون، محلول‌پاشی توام نانواکسیدآهن و نانوسیلیکون) بود. نتایج نشان داد که کاربرد توام کودهای زیستی و محلول‌پاشی نانواکسید آهن و سیلیکون در شرایط آبیاری کامل، حداکثر وزن دانه (07/56%)، طول دوره و دوره موثر پر شدن دانه (به‌ترتیب 29/22 و 43/48%)، شاخص کلروفیل (11/45%) و پروتئین برگ پرچم (75/64%)، ارتفاع بوته (31/49%)، تعداد دانه در سنبله (58/70%)، طول سنبله (75/53%)، وزن هزار دانه (9/64%) و عملکرد دانه (28/43%) را نسبت به شرایط عدم کاربرد کودهای زیستی و عدم محلول‌پاشی در شرایط محدودیت شدید آبی افزایش داد. محدودیت شدید آبی محتوای آنتوسیانین را افزایش داد ولی کاربرد کودهای زیستی و محلول‌پاشی نانواکسید آهن و نانوسیلیکون محتوای آن را کاهش داد. براساس نتایج این بررسی به‌نظر می‌رسد که کاربرد توام Pseudomonas و Azospirillum و محلول‌پاشی نانواکسید آهن و سیلیکون می‌تواند به‌عنوان یک روش مناسب برای افزایش عملکرد تریتیکاله در شرایط محدودیت آبی به‌کار برده شود.

کلیدواژه‌ها

موضوعات


Open Access

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abadi, N., Seyed Sharifi, R., Narimani, H., & Khalilzadeh, R. (2021). Effects of supplementary irrigation and application of mycorrhiza and azetobacter on grain filling components of rain fed barley (Hordeum vulgare). Journal of Plant Environmental Physiology, 16(61), 64-79. (in Persian). https://doi.org/10.30495/iper.2021.679523
  2. Abdelaal, K. A. A., EL-Shawy, E. A., Hafez, Y. M., Abdel-Dayem, S. M., Chidya, R. C. G., Saneoka, H., & ELSabagh, A. (2020). Nano-Silver and non-traditional compounds mitigate the adverse effects of net blotch disease of barley in correlation with up-regulation of antioxidant enzymes. Pakistan Journal of Botany, 52, 1065- https://doi.org/10.30848/PJB2020-3(13)
  3. Ahmadi Nouraldinvand, F., Seyedsharifi, R., Siadat, S. A., & Khalilzadeh, R. (2021). Effects of nano silicon concentrations and ibo-fertilizer on yield and grain filling components of wheat in different irrigation regimes. Iranian Journal of Field Crops Research, 91-105. (in Persian). https://doi.org/10.22067/jcesc.2021.67258.0
  4. AL Kahtani, M. D. F., Fouda, A., Attia, K., Al-Otaibi, F., Eid, A. M., Ewais, E., Hijri, M., St-Arnaud, M., Hassan, S., Khan, N., et al., (2020). Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy, 10, https://doi.org/10.3390/agronomy10091325
  5. Amirinejad, M., Akbari, G. A., Bagherizadeh, A., Allahdadi, I., Shahbazi, M., & Naimi, M. (2015). Effects of drought stress and foliar application of zinc and iron on some biochemical parameters of cumin. Journal of Crops Improvement, 17(4), 866-855. (in Persian). https://doi.org/10.22059/jci.2015.55136
  6. Ansari, , Mirmohammady Maibody, S. A. M., Arzani, A., & Golkar, P. (2018). Evaluation of Different Triticale (X Triticosecale Wittmack) Genotypes for Agronomic and Qualitative Characters. Iranian Journal of Field Crops Research, 4(15), 872-884. (in Persian with English abstract). https://doi.org/10.22067/gsc.v15i4.55994
  7. Babaeian, M., Piri, I., Tavassoli, A., Esmaeilianand, Y., & Gholami, H. (2011). Effect of water stress and micronutrients (Fe, Zn and Mn) on chlorophyll fluorescence, leaf chlorophyll content and sunflower nutrient uptake in sistan region. African Journal of Agricultural Research, 6, 3526-3531. https://doi.org/10.5897/AJAR10.1142
  8. Baveye, P. C., Schnee, L. S., Boivin, P., Laba, M., & Radulovich, R. (2020). Soil organic matter research and climate change: merely re-storing carbon versus restoring soil functions. Frontiers in Environmental Science, 8, 161-169. https://doi.org/10.3389/fenvs.2020.579904
  9. Bezabih, A., Girmay, G., & Lakewu, A. (2019). Performance of triticale varieties for the marginal highlands of Wag-Lasta, Ethiopia. Cogent Food and Agriculture, 5, 1-11. https://doi.org/10.1080/23311932.2019.1574109
  10. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248. https://doi.org/10.1006/abio.1976.9999
  11. Ellis, R. H, & Pieta-Filho, C. (1992). The development of seed quality spring and winter cultivars of barley and wheat. Seed Science Research, 2, 19-25. https://doi.org/10.1017/S0960258500001057
  12. Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P., & Tsuji, W. (2008). Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. Journal of Plant Nutrition, 31(2), 355-365. https://doi.org/10.1080/01904160801894913
  13. Epstein, E., & Bloom, A. (2005). Mineral Nutrition of plant: principles and perspectives. Ed2, Sinaver Associates, Sunderland, MA.
  14. Fahad, S., Ahmad, M., Akbar Anjum, M., & Hussain, S. (2014). The effect of micronutrients (B, Zn and Fe) foliar application on the growth, flowering and corm production of gladiolus (Gladiolus grandiflorus) in calcareous soils. Journal of Agricultural Science and Technology, 16, 1671-1682. http://dorl.net/dor/20.1001.1.16807073.2014.16.7.10.6
  15. Fallah, A., Visperas, R. M., & Alejar, A. A. (2004). The interactive effect of silicon and spikelet filling in rice (Oryza sativa). The Philippine Agricultural Scientist, 87, 174-176.
  16. FAO. (2017). Food and agriculture organization of the united nation. Quarterly bulletin of Statistics. Remote, Italy.
  17. Farmahini, M., Mirzakhani, M., & Sajedi, N. (2014). Effect of water stress and absorbent materials application on yield and components yield of fall wheat. Science-Research Quarterly Journal New Finding in Agriculture, 7(2), 263-274.
  18. Farooq, M., Wahid, A., & Lee, D. J. (2009). Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum, 31, 937-945.
  19. Fathi Amirkhiz, K., Amini Dehaghi, M., & Heshmati, S. (2015a). Effect of iron application methods on grain yield, yield components, oil content and fatty acids profile of spring safflower cv. Goldasht under deficit irrigation conditions. Iranian Journal of Crop Sciences, 16(4), 308-321. (in Persian). http://dorl.net/dor/20.1001.1.15625540.1393.16.4.4.5
  20. Fathi Amirkhiz, K., Amini Dehaghi, M., & Heshmati, S. (2015b). Study the effect of iron chelate on chlorophyll content, photochemical efficiency and some biochemical traits in Safflower under deficit irrigation condition. Iranian Journal of Field Crop Science, 46(1), 137-145. (in Persian with English abstract). https://doi.org/10.22059/ijfcs.2015.54053
  21. Galavi, M., Ramroudi, M., & Tavassoli, A. (2012). Effect of micronutrients foliar application on yield and seed oil content of safflower (Carthamus tinctorius). African Journal of Agricultural Research, 7(3), 482-486. https://doi.org/10.5897/AJAR11.1323
  22. Galili, G., Tang, G., Zhu, X., & Gakiere, B. (2001). Lysine catabolism: a stress and development superregulated metabolic pathway. Current Opinion in Plant Biology, 4, 261-266. https://doi.org/10.1016/S1369-5266(00)00170-9
  23. Gong, H., Chen, K., Chen, G., Wang, S., & Zhang, C. (2003). Effects of silicon on growth of wheat under drought. Journal Plant Nutrition, 26, 1055-1063. https://doi.org/10.1081/PLN-120020075
  24. Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in post under drought. Plant Science, 169, 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
  25. Hadi, H., Seyed Sharifi, R., & Namvar, A. (2016). Phytoprotectants and Abiotic Stresses. Urmia University press. 342 pp. (in Persian).
  26. Hassan, F. A. S. (2009). Response of Hibiscus sabdariffa plant to some biofertilization treatments. Annals of Agricultural Science, 54, 437-446.
  27. Kheirizadeh Arough, Y. (2016). Effects of nano zinc oxide foliar application, arbuscular mycorrhizal fungus and free living nitrogen fixing bacteria on yield and some physiological traits of Triticale under salinity and water limitation condition. PhD Thesis, University of Mohaghegh Ardabili, Iran.
  28. Leng, P., Itamura, H., Yamamura, H., & Deng, X. (2000). Anthocyanin accumulation in apple and peach shoots during cold acclimation. Scientia Horticulturae, 83, 43-50. https://doi.org/10.1016/S0304-4238(99)00065-5
  29. Mazaherinia, S., Astaraei, A. R., Fotovat, A., & Monshi, A. (2010). Nano iron oxide particles efficiency on Fe, Mn, Zn and Cu concentrations in wheat plant. World Applied Sciences Journal, 7(1), 36-40.
  30. Mita, S., Murano, N., Akaike, M., & Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin those are inducible by sugars. Plant Journal, 11, 841-851. https://doi.org/10.1046/j.1365-313x.1997.11040841.x
  31. Mohammadi Kale Sarlou, S., Seyed Sharifi, R., Sedghei, M., Narimani, H., & Khalilzadeh, R. (2021). Effects of salinity, vermicompost, humic acid and seed Iinoculation with flavobacterim on grain filling of triticale. Journal of Agricultural Science and Sustainable, 31(2), 250-269. (in Persian with English abstract). https://doi.org/10.22034/saps.2021.13108
  32. Movahedy Dehnavy, M., & Modarres Sanavy, S. A. M. (2009). Effect of Zn and Mn micronutrients on three winter safflowers under drought stress in Isfahan. Journal of Agricultural Sciences and Natural Resources, 13(2), 1-10. (in Persian).
  33. Naderi Darbaghshahy, M. R., Noor Mohammadi, Gh., Majidi, A., Darvish, F., Shirani Rad, A. M., & Madani, H. (2004). Effects of drought stress and plant density on ecophysiological traits of three safflower lines in summer planting in Isfahan Seed. Journal of Plant Production, 20, 281-296. https://doi.org/10.22092/spij.2017.110584
  34. Naderi, M. R., & Abedi, A. (2012), Application of nanotechnology in agriculture and refinement of environmental pollutants. Nanotechnology Journal, 11(1), 18-26.
  35. Narimani, H., Seyed Sharifi, R., Khalilzadeh, R., & Aminzadeh, G. (2018). Effects of nano iron oxide on yield, chlorophyll fluorescence indices and some physiological traits of wheat (Triticum aestivum) under rain fed and supplementary irrigation conditions. Iranian journal of Plant Biology, 3(10), 21-40. (in Persian). https://doi.org/10.22108/ijpb.2018.110895.1098
  36. Narimani, H., Seyed Sharifi, R., Khalilzadeh, R., & Aminzadeh, G. (2019). Effect of supplemental irrigation and nano iron oxide on chlorophyll content and filling components of wheat (Triticunm aestivum) under rainfed conditions. Environmental Stresses in Crop Sciences, 12(3), 735-746. (in Persian). https://doi.org/10.22077/escs.2019.1478.1327
  37. Orabi, S. A., Salman, S. R., & Shalaby, A. F. (2010). Increasing resistance to oxidative damage in cucumber (Cucumis sativus) plants by exogenous application of salicylic acid and paclobutrazol. World Journal of Agricultural Sciences, 6, 252-259.
  38. Qayyum, A., Al Ayoubi, S., Sher, A., Bibi, Y., Ahmad, S., Shen, Z., & Jenks, M. A. (2021). Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi Journal of Biological Sciences, 28, 5238-5249. https://doi.org/10.1016/j.sjbs.2021.05.040
  39. Ramezani, M., Seghatoleslami, M., Mousavi, G., & Sayyari-Zahan, M. H. (2013). Effect of salinity and foliar application of iron and zinc on yield and water use efficiency of ajowan (Carum copticum). International Journal of Agriculture and Crop Sciences, 7, 421-426. https://doi.org/10.22077/escs.2017.634
  40. Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  41. Ronanini, D., Savin, R., & Hal, A. J. (2004). Dynamic of fruit growth and oil quality of sunflower (Helianthus annuus) exposed to brief interval of high temperature during grain filling. Field Crop Research, 83, 79-90. https://doi.org/10.1016/S0378-4290(03)00064-9
  42. Schutz, M., & Fangmeir, E. (2001). Growth and yield responses of spring wheat to elevated CO2 and water limitation. Environmental Pollution, 114, 187-194. https://doi.org/10.1016/s0269-7491(00)00215-3
  43. Seyed Sharifi, R., & Namvar, A. (2016). Biofertilizers in Agronomy. University of Mohaghegh Ardebili Press. Iran. Ardebil. (in Persian).
  44. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., & Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean antioxidative systems in two cottons. General and Applied Plant Physiology, 33, 221-234. https://doi.org/10.1016/j.jplph.2010.04.011
  45. Taheri, G., Ajam Norozi, H., & Namni, M. (2000). Study of time and type of micronutrient on phenology, yield and yield components of soybean as the second crop in Golestan Journal of Plant Ecophysiology, 2, 56-46. (in Persian with English abstract).
  46. Talha, M., Abdul, S., Ahmad, S., Sami, Ul‑A., Muhammad, I., Muhammad, I., Madiha, B., & Mumtaz, C. (2021). Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio‑biochemical mechanisms, Scientific reports 23170 (11).
  47. Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in Arsenate tolerance. Frontiers in Environmental Science, 46(4), 1-14. https://doi.org/10.3389/fenvs.2016.00046
  48. Vitrac, X., Larronde, F., Krisa, S., Decendit, A., Deffieux, G., & Mérillon, J. M. (2000). Sugar sensing and Ca2+ calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry, 53, 659-665. https://doi.org/10.1016/s0031-9422(99)00620-2
  49. Yousefi, F., Jabbarzadeh, Z., Amiri, J., Rasouli-Sadaghiani, M. H., & Shaygan, A. (2021). Foliar application of polyamines improves some morphological and physiological characteristics of rose. Folia Horticulturae, 33(1), 1-10.
  50. Zafari, M., Ebadi, A., & Jahanbakhsh Gode Kahriz, S. (2016). Synergistic Effects of Glomus mosseae and Sinorhizobium meliloti on Compatibility Metabolites of Alfalfa. Journal of Agricultural Science and Sustainable Production, 26(3), 43-56. (in Persian).
CAPTCHA Image