شبیه‌سازی اثرات تاریخ کاشت بر رشد و عملکرد نخود دیم (Cicer arientinum L.) توسط مدل CROPGRO-CHICKPEA

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه رازی

چکیده

به‌منظور شبیه‌سازی اثرات تاریخ کاشت بر رشد و عملکرد نخود دیم منطقه کرمانشاه توسط مدل CROPGRO-CHICKPEA، آزمایشی به صورت کرت‌های خرد شده در قالب طرح پایه بلوک‌های کامل تصادفی با 3 تکرار در مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه رازی در سال زراعی 96-1395 اجرا شد. تیمارها شامل سه تاریخ کاشت (10 اسفند، 20 اسفند و 17 فروردین) به‌عنوان عامل اصلی و چهار رقم نخود (بیونیج، عادل، آرمان و ILC482) به‌عنوان عامل فرعی بود. ضرایب ژنتیکی ارقام توسط بخش محاسبه ضرایب ژنتیکی برای تاریخ کاشت 10 اسفند محاسبه شد. نتایج واسنجی نشان داد مدل قادر است با حداقل اختلاف، ویژگی‌های رشد و نمو را برای ارقام نخود شبیه‌سازی کند که بیانگر دقت بالای ضرایب ژنتیکی محاسبه شده بود. نتایج ارزیابی‌های مدل نشان داد که میانگین nRMSE وزن خشک کل برای ارقام مورد بررسی 5/16 درصد میانگین مشاهده‌ها بود. میانگین nRMSE عملکرد دانه نیز برای ارقام ذکر شده 5/13 درصد میانگین مشاهده‌ها بود. هم در شرایط مزرعه و هم در شبیه‌سازی تأخیر در کاشت منجر به کاهش عملکرد نخود شد. بیشترین عملکرد دانه مشاهده شده و شبیه‌سازی شده برای سال زراعی 96-1395 به‌ترتیب، 6/1326 و 6/1279 کیلوگرم در هکتار در تاریخ کاشت 20 اسفند حاصل شد. به‌طور کلی نتایج نشان داد که مدل CROPGRO-CHICKPEA قادر است واکنش ارقام نخود در تاریخ کاشت‌های مختلف را تحت شرایط اقلیمی منطقه مورد مطالعه با دقت قابل قبولی پیش‌بینی کند که این نشان‌دهنده دقت بالای ضرایب ژنتیک محاسبه شده در بخش واسنجی مدل است.

کلیدواژه‌ها


1. Amouzou, K. A., Naab, J. B., Lamers, J. P., Borgemeister, C., Becker, M., and Vlek, P. L. 2018. CROPGRO-Cotton model for determining climate change impacts on yield, water-and N-use efficiencies of cotton in the Dry Savanna of West Africa. Agricultural Systems 165: 85-96.
2. Benjamin, J., and Nielsen, D. 2006. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research 97: 248-253.
3. Boote, K. J., Prasad, V., Allen Jr, L. H., Singh, P., and Jones, J. W. 2018. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. European Journal of Agronomy 100: 99-109.
4. Deihimfard, R., Nassiri Mahallati, M., and Koocheki, A. 2015. Simulating the potential yield and yield gaps of sugar beet due to water and nitrogen limitations in Khorasan province using SUCROS model. Agroecology 7: 315-330. (in Persian with English abstract).
5. Goudriaan, J., and Van Laar, H. 2012. Modelling potential crop growth processes: textbook with exercises. Springer Science & Business Media.
6. Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., Singh, U., Lizaso, J. L., White, J. W., Uryasev, O., Ogoshi, R., Koo, J., Shelia, V., and Tsuji, G. Y., 2015. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net). DSSAT Foundation, Prosser, Washington.
7. Jalilian, A., Mondani, F., Khorramivafa, M., and Bagheri, A., 2017. Evaluation of CliPest model in simulation of winter wheat (Triticum aestivum L.) and wild oat (Avena ludoviciana L.) competition in Kermanshah. Agroecology 10: 248-266. (in Persian with English abstract).
8. Jame, Y. W., and Cutforth, H. W. 1996. Crop growth models for decision support systems. Canadian Journal of Plant Science 76: 9-19.
9. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T. 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235-265.
10. Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., and Singh, U. 1998. Decision support system for agrotechnology transfer: DSSAT v3. In Understanding options for agricultural production (pp. 157-177). Springer, Dordrecht.
11. Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N., Meinke, H., Hochman, Z., and McLean, G. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267-288.
12. Liu, H., Yang, J., Drury, C. A., Reynolds, W., Tan, C., Bai, Y., He, P., Jin, J., and Hoogenboom, G. 2011. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutrient Cycling in Agroecosystems 89: 313-328.
13. Liu, H. L., Liu, H. B., Lei, Q. L., Zhai, L. M., Wang, H. Y., Zhang, J. Z., Zhu, Y. P., Liu, S. P., Li, S. J., Zhang, J. S., and Liu, X. X. 2017. Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain. Journal of Integrative Agriculture 16: 2300-2307.
14. Liu, S., Yang, J., Zhang, X., Drury, C., Reynolds, W., and Hoogenboom, G. 2013. Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China. Agricultural Water Management 123: 32-44.
15. Mahru, A. H., Soltani, A., Galeshi, S., and Kalate-Arabi, M. 2010. Estimates of genetic coefficients and evaluation of model DSSAT for Golestan province. Elecronic Journal of Crop Production 3: 229-253. (in Persian with English abstract).
16. Mohammed, A., Tana, T., Singh, P., Korecha, D., and Molla, A. 2017. Management options for rainfed chickpea (Cicer arietinum L.) in northeast Ethiopia under climate change condition. Climate Risk Management 16: 222-233.
17. Mondani, F., and Jalilian, A. 2019. Evaluation of the Interaction between Sowing Date and Cultivar on Different Traits of Chickpea (Cicer arietinum L.) in Kermanshah Climate Conditions. Plant Production Technology 1: 37-51. (in Persian with English abstract).
18. Mondani, F., Nassiri-Mahallati, M., Koocheki, A., and Hajian-Shahri, M. 2015. Simulation of wild oat (Avenaludoviciana L.) Competition on Winter Wheat (Triticum aestivum) Growth and Yield. I: Model Description and Validation. Iranian Journal of Field Crops Research 13: 218-231. (in Persian with English abstract).
19. Mondani, F. 2017. Simulation of Nitrogen Fertilizer Effect on Maize (Zea maize) Production by CERES-Maize Model under Kermanshah Climate Condition. Journal of Water and Soil 31: 1665-1678. (in Persian with English abstract).
20. Ovando, G., Sayago, S., and Bocco, M. 2018. Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data. ISPRS Journal of Photogrammetry and Remote Sensing 138: 208-217.
21. Patil, D. D., and Patel, H. R. 2017. Calibration and Validation of CROPGRO (DSSAT 4.6) Model for Chickpea under Middle Gujarat Agroclimatic Region. International Journal of Agriculture Sciences 9: 4342-4344.
22. Penning, de Vries, F. W. T., and Van Laar, H. H. 1982. Simulation of plant growth and crop production. Simulation Monographs. Wageningen (Netherlands): Pudoc. 308p.
23. Singh, P., and Virmani, S. 1996. Modeling growth and yield of chickpea (Cicer arietinum L.). Field Crops Research 46: 41-59.
24. Singh, P., Nedumaran, S., Boote, K. J., Gaur, P. M., Srinivas, K., and Bantilan, M. C. S. 2014. Climate change impacts and potential benefits of drought and heat tolerance in chickpea in South Asia and East Africa. European Journal of Agronomy 52: 123-137.
25. Soltani, A., Robertson, M. J., Mohammad-Nejad, Y., and Rahemi-Karizaki, A. 2006. Modeling chickpea growth and development: leaf production and senescence. Field Crop Research 99: 14-23.
26. Sorecha, E. M., Kibret, K., Hadgu, G., and Lupi, A. 2017. Exploring the ımpacts of climate change on Chickpea (Cicer arietinum L.). Production in central highlands of Ethiopia. Academic Research Journal of Agricultural Science and Research 5: 140-150.
27. Taie, J., Amiri, E., Aien, A., Boroumand, N., and Jokar, M. 2018. Evaluation of DSSAT model for potential yield prediction of potato under autumn cropping system (Case study: Jiroft, Iran), Journal of Crops Improvement 19: 893-905.
28. Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63: 1309-1313.
29. Yang, J., Yang, J., Dou, S., Yang, X., and Hoogenboom, G. 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutrient Cycling in Agroecosystems 95: 287-303.
CAPTCHA Image