Document Type : Research Article
Authors
1
PhD Student of Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
2
Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
Abstract
Introduction
During the 1950s and 1960s, the green revolution led to a dramatic increase in global food and fodder production to eliminate hunger and boost food security. This production enhancement was accompanied by an intensified agricultural and chemical input consumption and increased cultivated area and mechanization. Although yield per unit area has improved in most crops, concerns about food security for the world's rising population are still significant. Guaranteeing food security in the future will necessitate a shift in management approaches to boost output, agroecosystem sustainability, and stability and reduce the environmental harm caused by agriculture. The first step to achieving sustainability and ecological intensification in agricultural systems is to have a comprehensive agroecological analysis of agricultural systems in each region. Hence, the complete evaluation and analysis of agroecological features according to their type in each region is necessary for establishing an optimal management technique. After analyzing the present state of each region's shared ecosystems, the optimal strategy for boosting production stability must be devised and implemented.
Materials and Methods
The goal of this study was to undertake a detailed investigation of the agroecological state of the sugar beet ecosystems on a local scale. For this purpose, data were collected on the area under cultivation, yield, and input consumption (including nitrogen and phosphorus fertilizers and chemical pesticides) from 2001 to 2016. Data was acquired from the Ministry of Agriculture and other related organizations and direct interviews with the farmers. In addition, data on climatic parameters (including daily minimum and maximum temperatures, precipitation, and sunny hours) were collected from the Torbat-e Heydariyeh meteorological station. This study researched the most important agroecological indicators of sugar beet farming systems in the Torbat-e Heydarieh region. Study indicators include variations in sugar beet cultivation area and yield, Potential yield via the methods FAO and FAO modified, beet yield gap, Regional Yield Factor trend, Changes in the intensification, yield stability, nitrogen uptake, and nitrogen utilization, and nitrogen use efficiency.
Results and Discussion
According to this study results, sugar beet production increased by 59 percent between 2001 and 2016. During the research years, sugar beet ecosystems saw a drop in the cultivation area. Potential yield calculations using both FAO and modified FAO methodologies revealed that potential yield was nearly consistent over the research period in the region.
The sugar beet yield gap averaged 35 ton.ha-1 over the research period. According to the findings, the percentage of sugar beet yield gap ranged from 53 to 69 %, with an average of 63 %. The extent of the yield gap decreased over the research period. The study of the regional yield factor (RYF) revealed that improving the management system resulted in higher actual yield and thus a smaller yield gap in sugar beet ecosystems. In sugar beet cultivation systems, the results revealed that by increasing intensification, the stability decreased. In sugar beet cultivation systems, there was a reduction in yield stability. Given that nitrogen consumption efficiency is one of the most important factors influencing the degree of stability in agricultural systems, the findings revealed that the rate of nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE), and nitrogen use efficiency (NUE) all decreased during the studied years in the region.
Conclusion
According to the findings, the major cause of the increase in nitrogen consumption, growing intensification, and decreasing stability in the analyzed systems appears to be a deficiency of nitrogen use efficiency and its downward trend. As a result, planning and altering management methods focusing on enhancing Nitrogen use efficiency may be proposed as the first step toward boosting sustainability in the Torbat-e Heydarieh sugar beet agroecosystems.
Keywords
Main Subjects
Send comment about this article