بررسی خصوصیات فیزیولوژیکی و عملکردی گیاه کینوا تحت تأثیر سطوح مختلف آبیاری و تراکم بوته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای فیزیولوژی گیاهی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

3 مرکز ملی تحقیقات شوری، سازمان تحقیقات آموزش و ترویج کشاورزی، یزد، ایران

4 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

کینوا به‌عنوان یک گیاه زراعی جدید، به دلیل سازگاری وسیع به شرایط مختلف اقلیمی از جمله خشکی و نیز زودرس بودن، گیاهی مناسب برای کاشت در مناطق خشک است. با هدف بررسی تراکم بهینه کینوا در سطوح مختلف آبیاری، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه بیرجند انجام گرفت. فاکتور اول سطوح آبیاری (برمبنای 50، 75 و 100 درصد نیازآبی) و فاکتور دوم تراکم بوته در 5 سطح (40، 60، 80، 100 و 120 بوته در متر مربع) بود. صفات اندازه‌گیری شامل محتوای نسبی آب برگ، هدایت روزنه‌ای، نشت الکترولیت، تعداد انشعاب، تعداد دانه در انشعاب، وزن انشعاب، وزن هزار دانه، عملکرد دانه، کارایی مصرف آب و پروتئین دانه بود. نتایج نشان دادکه اجزای عملکرد در مواجهه با شرایط کم‌آبیاری، به‌طور معنی‌داری کاهش یافت، نتایج سطوح آبیاری و تراکم نشان داد که بالاترین عملکرد در 100 درصد نیاز آبی و تراکم 100 بوته به میزان 52/4268 کیلوگرم در هکتارحاصل شد و همچنین نشان داد که درسطوح آبیاری 75 درصد نیاز آبی نیز بالاترین عملکرد در تراکم 100 بوته حاصل شد و با کاهش تراکم به میزان 2/73 درصد با کاهش عملکرد همراه بود ولی در سطح 50 درصد نیاز آبی بالاترین عملکرد در تراکم 80 بوته حاصل شد که با کاهش تراکم به 40 بوته عملکرد به میزان 5/73 درصد با کاهش همراه بود. بهینه‌ترین تراکم در سطح آبیاری 100، 75 و 50 درصد نیاز آبی، به‌ترتیب 113، 105 و 80 بوته در متر مربع بود. در این تحقیق برای تعیین بهترین تراکم در سطوح مختلف آبیاری این آزمایش طراحی شد که با توجه به نتایج حاصل می‌توان گفت که بهینه‌ترین تراکم در سطح آبیاری 100 درصد نیاز آبی به میزان 113 بوته در مترمربع حاصل شده و با افزایش میزان تنش به 75 و 50 درصد نیاز آبی به‌ترتیب تراکم بهینه به میزان 105 و 80 بوته در متر مربع حاصل شده است.

کلیدواژه‌ها

موضوعات


Open Access

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abugoch, L., Castro, E., Tapia, C., Añón, M. C., Gajardo, P., & Villarroel, A. (2009). Stability of Quinoa Flour Proteins (Chenopodium quinoa) During Storage. International Journal of Food Science & Technology, 44(10), 2013-2020. https://doi.org/10.1111/j.1365-2621.2009.02023.x
  2. Ahmadi, A., & Ceiocemardeh, A. (2004). Effect of drought stress on soluble carbohydrate, chlorophyll and proline in four adopted wheat cultivars with various climate of Iran. Iranian Journal Agriculture Science, 35, 753-763. (in Persian with English abstract).
  3. Alvarez, J. A., & Ashraf, A. (2010). Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. International Journal of Endocrinology, 61(4), 337-48. https://doi.org/10.1155/2010/351385
  4. Aly, A. A., Al-Barakah, F. N., & El-Mahrouky, M. A. (2018). Salinity stress promote drought tolerance of Chenopodium Quinoa Communications in Soil Science and Plant Analysis, 49(11), 1331-1343. https://doi.org/10.1080/00103624.2018.1457160
  5. AOAC. (1990). Official Methods of Analyses. Association of Official Analytical Chemists: Washington, DC.
  6. Aziz, A., Akram, N. A., & Ashraf, M. (2018). Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa) plants under water deficit regimes. Plant Physiology and Biochemistry, 123, 192-203. https://doi.org/10.1016/j.plaphy.2017.12.004
  7. Badran, A. E., El-Sherebeny, E. A. M., & Salama, Y. A. (2015). Performance of some Alfalfa cultivars under salinity stress conditions. Journal Agriculture Science, 7(10), 281-290. https://doi.org/10.5539/jas.v7n10p281
  8. Bagheri, M. (2019). Quinoa Agriculture Manual. Ministry of Jihad for Agriculture, Seed and Plant Breeding Research Institute. 56 pages.
  9. Bhargava, A., Shukla S., & Ohri, D. (2006). Chenopodium quinoa—An Indian perspective. Industrial Crops and Products, 23, 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
  10. Bhargava, A., Shukla, S., & Ohri, D. (2007). Effect of sowing dates and row spacing’s on yield and quality components of quinoa (Chenapodium quinoa) leaves. Indian Journal of Agricultural Sciences, 77(11), 748-751. https://doi.org/10.3390/agriculture11050405
  11. Bhargava, A., Shukla, S., Rajan S., & Ohri, D. (2007). Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa) germplasm. Genetics Resources and Crop Evolution, 54, 167-173. https://doi.org/10.1007/s10722-005-3011-0
  12. Bieler, P., Fussell L. K., & Bidinger, F. R. (1993). Grain growth of Pennisetum glaucum (L.) R. Br. under well watered and drought- stressed conditions. Field Crops Reserch, 31, 41-54. https://doi.org/10.1016/0378-4290(93)90049-S
  13. Biglouei, M. H., Kafi Ghasemi, A., Javaher Dashti, M., & Esfahani, M. (2013). Effect of irrigation regimes on yield and quality of forage maize (KSC 704) in Rasht region in Iran. Iranian Journal of Crop Sciences, 15(3), 196-206.
  14. Bloch, D., Hoffman, C. M., & Marlandar, B. (2006). Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes. European Journal of Agronomy, 24(3), 218-225.
  15. Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Science, 21(1), 43-47. https://doi.org/10.2135/cropsci1981.0011183X002100010013x
  16. Board, J. E., & Harville, B. G. (1996). Growth dynamics during the vegetative period affects yield of narrow-row, late-planted soybean. Agronomy Journal, 88, 567-572. https:/doi.org/10.2134/agronj1996.00021962008800040012x
  17. Boojang, H., & Fukai, S. (1996). Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions.1: Growth during drought. Field Crops Research, 48, 37-45. https://doi.org/10.1016/0378-4290(96)00039-1
  18. Cabuslay, G. S., Ito, O., & Alejar, A. A. (2002). Physiological Evaluation of Responses of Rice (Oryza sativa) to Water Deficit. Plant Science, 163(4), 815-827. https://doi.org/10.1016/S0168-9452(02)00217-0
  19. Chamberlain, D. G., Thomas, P. C., Wilson, W., Newbold, C. J., & MacDonald, J. C. (1985). The effects of carbohydrate supplements on ruminal concentrations of ammonia in animals given diets of grass silage. The Journal of Agricultural Science, 104(2), 331-340. https://doi.org/10.1017/S0021859600044002
  20. Dagdelen, N., Yilmaz, E., Sezgin, F. & Gurbuz, T. (2006). Water-yield relation and water use efficiency of cotton (Gossypicum hirisutum) and second crop corn (Zea mays L.) in western Turkey. Agriculture. Water Management, 82(1), 63-85.
  21. El-Kheir, M. S. A., Kandil, S. A., & Mekki, B. B. (1994). Physiological response of two soybean cultivars grown under stress conditions as affected by CCC treatment. Egypt. Journal of Physiology Sciences, 18, 179-200. https://doi.org/10.3923/ajps.2009.536.543
  22. English, M. (1990). Deficit irrigation. I. Analytical framework Journal of Irrigation and Drainage. E-ASCE, 116, 399-412. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:3(399)
  23. English, M. J., Musick, J. T., & Murty, V. V. (1990). Deficit Irrigation. In:J. Hoffman, T.A. Towell and K.H. Solomon (Eds.) Management of Farm Irrigation Systems. St. Joseph, Michigan, United States of America, ASAE.
  24. Eshghizadeh, H. R., Zahedi, M., Ashrafi, A., & Khajehpour, M. R. (2010). The effect of irrigation regime and plant density on growth and development, leaf moisture content and yield of sweet corn (K.S.C.404). Journal of Applied Crop Research, 88, 45-53. (in Persian with English abstract).
  25. Eyvazi, A. R., Mohammadi, S. A., Abdollahi, Sh., Hosseini Salkadeh, S. A., & Majidi Heravan, E. (2005). Effect of Soil Salinity on Morpho-Physiological Traits of Ten Spring Wheat (Triticum aestivum) Genotypes. Journal of Agricultural Knowledge, 16(2), 171-184. (in Persian with English abstract)
  26. FAO. (2011). Quinoa; An Ancient Crop to Contribute to World Food Security. Regional Office for Latin America and the Caribbean. 63p.
  27. FAOSTAT. (2020). https://www.fao.org/faostat/en/
  28. Fuentes, F., & Bhargava, A. (2011). Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science, 197, 124-134. https://doi.org/10.1111/j.1439-037X.2010.00445.x
  29. Garcia, M., Raes, D., & Jacobsen, S. E. (2003). Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agriculture Water Management, 60, 119-134. https://doi.org/10.1016/S0378-3774(02)00162-2
  30. Geerts, S., Raes, D., Garcia, M., Del Castillo, C., & Buytaert, W. (2006). Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: A case study for quinoa. Agriculture Forest Meteorology, 139, 399-412. https://doi.org/10.1016/j.agrformet.2006.08.018
  31. Ghasemi Siani, E., Fallah, S., & Tadayyon, A. (2011). Study on Yield and Seed Quality of Plantago ovata, Under Different Nitrogen Treatments and Deficit Irrigation. Iranian Journal of Medicinal and Aromatic Plants Research, 27(3), 517-528. (in Persian with English abstract). https://doi.org/10.22092/ijmapr.2011.6392
  32. Ghooshchi, F., Shirani Rad, A. H., Noormohammadi, Gh., & Hadi, H. (2010). Changes in Yield and Seed Yield Components of Rapeseed Cultivars in Optimum and Limited Irrigation Conditions. Improvement Research (Environmental Stresses in Plant Sciences), 2(1), 13-28. (in Persian).
  33. Goldhamer, D. A., Salinas, M., Crisosto, C., Day, K. R., Soler, M., & Moriana, A. (2002). Effects of regulated deficit irrigation and partial rootzone drying on late harvest peach tree performance. Acta Horticulturae, 592, 343-350. https://doi.org/10.17660/ActaHortic.2002.592.48
  34. Hashemi Dezfouli, A., Koocheki, A., & Banayan, M. (1995). Maximizing Crop Yields. Jahad Daneshgahi of Mashhad Press, Mashhad, Iran (in Persian).
  35. Hashemi Nia, S. M. (2004). Water Management in Agriculture. First Edition. Ferdowsi University of Mashhad Press. Mashhad, Iran. 536 Page. (in Persian).
  36. Hassanpour, H., & Niknam, V. (2014). Effect of water deficit stress on growth and antioxidant enzyme activity of Mentha pulegium at flowering stage. Journal of Plant Process and Function, 3(8), 25-34. (in Persian with English abstract).
  37. Jackson, M. B. (1993). Are plant hormones involved in root-to-shoot communication? Advances in Botanical Research, 19, 103-187.
  38. Jacobsen, S. E., Liu, F., & Jensen, R. (2009). Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122(2), 281-287.
  39. Jakobsen, A. L. (2003). Effects of think aloud on translation speed, revision, and segmentation. Benjamins Translation Library, 45, 69-96. https://doi.org/10.1075/btl.45.08jak
  40. Jamali, S., Goldani, M., & Zaenodin, S. M. (2018). Investigation of the effect of periodic water stress on yield, yield components and water use efficiency of quinoa. Iranian Journal of Irrigation and Drainage, 13, 1687-1697.
  41. Jayme-Oliveira, A., Ribeiro Júnior, W. Q., Ramos, M. L. G., Ziviani, A. C., & Jakelaitis, A. (2017). Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesquisa Agropecuária Brasileira, 52(8), 561-571. https://doi.org/10.1590/s0100-204x2017000800001
  42. Kafi, A. K. M., Ahmadalinezhad, A., Wang, J., Thomas, D. F., & Chen, A. (2010). Direct growth of nanoporous Au and its application in electrochemical biosensing. Biosensors and Bioelectronics, 25(11), 2458-2463. https://doi.org/10.1016/j.bios.2010.04.006
  43. Kafi, R., Kwak, H. S. R., Schumacher, W. E., Cho, S., Hanft, V. N., Hamilton, T. A., & Kang, S. (2007). Improvement of naturally aged skin with vitamin A (retinol). Archives of Dermatology, 143(5), 606-612. https://doi.org/10.1001/archderm.143.5.606
  44. Khajepour, F., & Hosseini, S. A. (2012). Citric acid improves growth performance and phosphorus digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal. Animal Feed Science and Technology, 171(1), 68-73. https://doi.org/10.1016/j.anifeedsci.2011.10.001
  45. Khazaei, H. (2001). Improvement of sugarbeet (Beta Vulgaris) seed germination with water treatement.
  46. Khazaei, H. (2002). The effect of drought stress on yield and physiological characteristics of resistant and susceptible wheat cultivars and the introduction of the most appropriate drought resistance indices. PhD Thesis in Crop Physiology, Faculty of Agriculture, Ferdowsi University of Mashhad. https://doi.org/10.22077/escs.2017.360.1068
  47. Khorshidi, M., Rahimzadeh, B., Mirhadi, M., & Normohamadi, Gh. (2002). Investigation of the effects of drought stress on potato growth stages. Iranian Journal of Crop Sciences, 4(1), 59-48.
  48. Koutroubas, S. D., Papakosta, D. K., & Doitsinis, A. (2000). Water requirements for castor oil crop (Ricinnus communis) In a mediterranean climate. Journal of Agronomy and Crop Science, 14, 33-41. https://doi.org/10.1046/j.1439-037x.2000.00357.x
  49. Lavini, A., Pulvento, C., d'Andria, R., Riccardi, M., Choukr, R., Allah, O. Belhabib. (2014). Quinoa's potential in the Mediterranean region. Journal of Agronomy and Crop Science, 200, 344-360. https://doi.org/10.1111/jac.12069
  50. Lugojan, C., & Ciulca, S. (2011). Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology, 15(2), 173-177.
  51. Matinfar, M., Matinfar, M., Mahjoor, M., Shiranirad, A. H., & Mohammadi, R. (2012). Effect of plant density on yield and yield components of rapeseed varieties (Brassica napus) in Qazvin. Ecophysiology of Farm Crops, 4(24), 405-414. (in Persian with English abstract).
  52. Morgan, J. M. (1977). Changes in diffusive conductance and water potential of wheat plants before and after anthesis. Australian Journal of Plant Physiology, 4, 75-86.
  53. Nazari Nasi, H., Jabbari, F., Azimi, M. R., & Nowruzian, M. (2012). Evaluation of the effect of drought stress on membrane stability, photosynthesis rate, relative water content and grain yield of four bean cultivars. Iranian Journal of Crop Science, 43(3), 499-491. https://doi.org/10.22059/ijfcs.2012.29045
  54. Oya, T., Nepomuceno, A. L., Neumaier, N., Boucas Farias, J. R., Tobita, S., & Ito, O. (2004). Drought tolerance characteristics of Brazilian soybean cultivars evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Production Science, 7(2), 129-137. https://doi.org/10.1626/pps.7.129
  55. Prasad, T., & Yadav, D. S. (1990). Effect of irrigation and plant density on yield attributes and yield of green gram and black gram. Indian Journal of Agronomy, 35, 99-151.
  56. Premachandra, G. S., Saneoka, H., Fujita, K., & Ogata, S. (1992). Leaf water relations, osmotic adjustment, cell membrane stability, epicuticle wax load and growth as affected by increasing deficits in Sorghum. Journal of Experimental Botany, 43, 156-176.
  57. Rabbani, J., & Emam, Y. (2011). Response of grain yield of corn hybrids to drought stress at different stages of growth. Journal of Production and Processing of Crop and Horticultural Products, 1(2), 78-65. https://dorl.net/dor/20.1001.1.22518517.1390.1.2.5.0
  58. Rabbani, J., & Emam, Y. (2011). Yield Response of Maize Hybrids to Drought Stress at Different Growth Stages. Journal of Crop Production and Processing, 1(2), 65-78. (in Persian with English abstract).
  59. Rao, K. G. (1987). Water use and irrigation response to defoliated corn with various population. Available from University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106, Order No. 8706243. Ph.D. Dissertation. 142p, 36 fig, 43 tab, 73 ref, append.
  60. Razzaghi, F., Plauborg, F., Jacobsen, S., Jensen, C. R., & Andersen, M. N. (2012). Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural Water Management, 109, 20-29. https://doi.org/10.1016/j.agwat.2012.02.002
  61. Risi, J., & Galwey, N. W. (1991). Effects of sowing date and sowing rate on plant development and grain yield of quinoa (Chenopodiumquinoa) in a temperate environment. Journal of Agricultural Science, 117, 325-332. https://doi.org/10.17557/tjfc.485617
  62. Rushdie, M., Heidari Sharifabad, H., Karimi., Noor Mohammadi, Q., & Dervish, F. (2006). Effects of dehydration stress on yield and grain yield components of sunflower cultivars. Special Issue of Agricultural Sciences Research, 12(1), 109-122. https://doi.org/10.22055/ppd.2022.32122.1862
  63. Sairam, R. K., & Srivastava, G. C. (2001). Water stress tolerance of wheat (Triticum aestivum): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70. https://doi.org/10.1046/j.1439-037x.2001.00461.x
  64. Salehi, M., & Dehghani, F. (2019). Guide to planting, holding and harvesting quinoa in saline conditions. Ministry of Jihad Agriculture, Agricultural Research, Education and Extension Organization, Deputy for Extension. 96 pages. https://doi.org/10.22077/escs.2021.3287.1837
  65. Samadzadeh, A. R., Zamani, Gh., & Fallahi, H. R. (2019). Possibility of quinoa production under South-Khorasan climatic condition as affected by planting densities and sowing dates. Journal of Agricultural Applied Research, 33(1), 126.104-82. https://doi.org/10.22092/aj.2020.125793.1392
  66. Sandha, T. S., Bhllav, H., Chema, S., & Gill, A. (1977). Variability and interrelationship among grain protein yield and yield components in mungbeen. Indian Journal Agriculture Reserch, 30, 871-882.
  67. Sarmadnia, Gh. H., & Koocheki, E. (1991). Crop Physiology. Jehade-Daneshgahi of Mashhad Publication. (in Persian).
  68. Sarmadnia, Gh. H., & Kouchaki, A. (1991). Crop Physiology, Mashhad University Jihad Publications. 467 p. https://doi.org/10.2135/cropsci1991.0011183X003100020034x
  69. Sharma, B., Molden, D., & Cook, S. (2015). Water use efficiency in agriculture: Measurement, current situation and trends. PP 39-64 in P. Drechsel, P. Heffer, H. Magen, R. Mikkelsen and D. Wichelns eds. Managing Water and Fertilizer for Sustainable Agricultural Intensification. Paris, France: International Fertilizer Industry Association (IFA), Colombo, Sri Lanka: International Water Management Institute (IWMI), Georgia, USA: International Plant Nutrition Institute (IPNI), Horgen, Switzerland: International Potash Institute (IPI). https://doi.org/10.22004/ag.econ.208411
  70. Shibairo, S. I., Upadhyaya, M. K., & Toivonen, P. M. A. 1998. Influence of prearrest water stress on postharvest moisture loss of carrot (Daucus carota). Journal of Horticultural Science and Biotechnology, 73, 347-352. https://doi.org/10.1080/14620316.1998.11510984
  71. Soleimanipour, Sh., Shirani Rad, A. H., Madani, H., Rezaie Zad, A., & Fareghi, Sh., (2009). Study the time effect of irrigation outage on agronomic traits of cultivars of winter rapeseed. New Findings in Agricultre, 3(3), 263-274. (in Persian with English abstract).
  72. Soleimanpour, S., Shiranirad, A. H., Madani, H., Rezaeizad, A., & Fareghi, S. (2009). Investigation the Effect of Water Deficit on Agronomical Characteristics and Growth Indices of Winter Rapeseed Cultivars. New Finding in Agriculture, 3(3), 263-274. (in Persian with English abstract).
  73. Spehar, C. R., & Rocha, J. E. S. (2009). Effect of sowing density on plant growth and development of quinoa, genotype 4.5, in the Brazilian savannah highlands. Bioscience Journal, 25, 53-58. https://doi.org/10.22092/sppi.2021.123894
  74. Wilson, H. D., & Heiser, C. B. (1979). The origin and evolutionary relationships of‘Huauzontle, (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. American Journal of Botany, 66(2), 198-206. https://doi.org/10.1002/j.1537-2197.1979.tb06215.x
  75. Winter, S. R., Musick, J. T., & Porter, K. B. (1988). Evaluation of Screening Techniques for Breeding Drought – Resistance Winter Wheat. Crop Science, 28, 512-516. https://doi.org/10.2135/cropsci1988.0011183X002800030018x
  76. Yadav, R., Gayadin, S., & Jaiswal, A. K. (2001). Morpho-physiological changes and variable yield of wheat genotypes under moisture stress conditions. Indian Journal of Plant Physiology, 6, 390-394.
  77. Yerardi, R. S. (2007). Biobehavioral nicotine dependence in persons with schizophrenia (Doctoral dissertation, The Ohio State University).
  78. Zhang, H., & Oweis, T. (1999). Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agriculture Water Manage, 38, 195-211. https://doi.org/10.1016/S0378-3774(98)00069-9
CAPTCHA Image