ارزیابی اثرات دوره‌های آبیاری و کیتوزان به‌عنوان یک الیسیتور زیستی بر رشد و عملکرد پیاز (Allium cepa L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری اگرواکولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 مجتمع آموزش عالی میناب، دانشگاه هرمزگان، ایران

3 هسته پژوهشی اگرواکولوژی در مناطق خشک، دانشگاه هرمزگان، ایران

4 گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، ایران

چکیده

محدود بودن منابع آبی، چالش بزرگی در مناطق خشک و نیمه‌خشک به‌ویژه در بخش کشاورزی است که بیشترین مقدار مصرف آب را دارد و با توجه به تقاضای روزافزون غذا، اجرای روش‌های مدیریتی که موجب استفاده کارآمد از منابع آبی و همچنین افزایش عملکرد محصولات کشاورزی می‌شود، ضروری به نظر می‌رسد. بدین منظور این مطالعه با هدف بررسی تأثیر دور آبیاری و استفاده از کیتوزان به‌عنوان الیسیتور زیستی (استخراج‌گر زیستی) به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1400 در استان هرمزگان انجام شد. فاکتور اصلی دور آبیاری (2، 4 و 6 روز) و فاکتور فرعی محلول‌پاشی سه غلظت کیتوزان (صفر، 1000 و 2000 پی‌پی‌ام) انجام شد. صفات اندازه گیری‌شده در این مطالعه شامل ارتفاع بوته، ارتفاع سوخ، قطر سوخ، شاخص شکل سوخ، وزن خشک سوخ، وزن خشک اندام هوایی، وزن خشک کل، درصد ماده خشک سوخ، شاخص برداشت و عملکرد سوخ می‌شود. نتایج حاصل از این تحقیق نشان داد که تأثیر دور آبیاری و مصرف کیتوزان بر اکثر صفات اندازه‌گیری‌شده معنی‌دار بود و اثر متقابل دور آبیاری و مصرف کیتوزان فقط در صفات وزن خشک اندام هوایی، شاخص برداشت و عملکرد سوخ معنی‌دار بود. بیشترین مقدار صفات اندازه‌گیری‌شده در دور آبیاری دو روز مشاهده شد که در واقع نشان‌دهنده پاسخ مثبت گیاهان به کاهش فاصله زمانی آبیاری می‌باشد. همچنین درخصوص اثرات کیتوزان نیز با مصرف این ماده مقدار صفات اندازه‌گیری‌شده نسبت به شاهد افزایش یافت ولی اختلاف بین سطوح مصرف کیتوازن با یکدیگر در اکثر موارد معنی‌دار نبود. در بررسی اثر متقابل دور آبیاری و مصرف کیتوزان، بالاترین عملکرد سوخ به تیمار دور آبیاری دو روز با مصرف 2000 پی‌پی‌ام کیتوزان با میانگین 74066 کیلوگرم در هکتار حاصل شد و عملکرد در تیمار دور آبیاری دو روز با مصرف 2000 پی‌پی‌ام کیتوزان دو برابر عملکرد تیمار شاهد بود. از طرف دیگر در دور آبیاری شش روز با مصرف 2000 پی‌پی‌ام کیتوزان تحت شرایط تنش رطوبتی مقدار 53597 کیلوگرم در هکتار سوخ تولید شد که اثرات مثبت کاربرد کیتوزان در شرایط تنش رطوبتی را نشان می‌دهد. لذا کاربرد کیتوزان به‌عنوان الیسیتور زیستی می‌تواند تا حدی به حفظ توان تولیدی گیاه در شرایط محدودیت رطوبتی کمک کند و موجب افزایش عملکرد شود، اما نمی‌توان گفت کاربرد کیتوزان به‌صورت محلول‌پاشی در مزرعه از نظر اقتصادی قابل‌توجیه است و یا افزایش درآمد حاصل از عملکرد این هزینه را جبران می‌کند، زیرا قیمت این محصول علاوه‌بر صادرات و واردات پیاز، بسیار وابسته به عرضه و تقاضا است.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdelaal, K., Attia, K. A., Niedbała, G., Wojciechowski, T., Hafez, Y., Alamery, S., & Arafa, S. A. (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae, 7(11), 510. https://doi.org/10.3390/horticulturae7110510
  2. Agricultural statistics of the crop year 2020-2021, first volume: Crops. Ministry of Agricultural Jihad, Planning and Economic Deputy, Information and Communication Technology Center, 2021. (in Persian).
  3. Ahmed, K. B. M., Khan, M. M. A., Siddiqui, H., & Jahan, A. (2020). Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review. Carbohydrate Polymers227, 115331. https://doi.org/10.1016/j.carbpol.2019.115331
  4. Ahmed, M. E. M., Ragab, M. E., Al-Araby, A. A., & Rehab, M. (2019). Effect of nano particles of chitosan, calcium and copper on growth, yield, quality and storability of onion (Allium cepa). 9th International Conference for Sustainable Agricultural Development 4-6 March.
  5. Ali, E. F., El-Shehawi, A. M., Ibrahim, O. H. M., Abdul-Hafeez, E. Y., Moussa, M. M., & Hassan, F. A. S. (2021). A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiology and Biochemistry, 161, 166-175. https://doi.org/10.1016/j.plaphy.2021.02.008
  6. Aliasgharzad, N., Bolandnazar, S., Neyshabouri, M., & Chaparzadeh, N. (2009). Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa). Biologia, 64(3), 512-515. https://doi.org/10.2478/s11756-009-0072-0
  7. Arif, Y., Siddiqui, H., & Hayat, S. (2022). Role of chitosan nanoparticles in regulation of plant physiology under abiotic stress. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance Cham: Springer International Publishing. (pp. 399-413). https://doi.org/10.1007/978-3-030-86876-5_16
  8. Asim, A., GÖKÇE, Z. N. Ö., Bakhsh, A., ÇAYLI, İ. T., Aksoy, E., ÇALIŞKAN, S., & Demirel, U. (2021). Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p. Turkish Journal of Agriculture and Forestry, 45(5), 651-668. https://doi:10.3906/tar-2103-60
  9. Attaran Dowom, S., Karimian, Z., Mostafaei Dehnavi, M., & Samiei, L. (2022). Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biology, 22(1), 364. https://doi.org/10.1186/s12870-022-03689-4
  10. Bakhoum, G., Sadak, M., & Tawfic, M. (2022). Chitosan and chitosan nanoparticle effect on growth, productivity and some biochemical aspects of Lupinus termis L plant under drought conditions. Egyptian Journal of Chemistry, 65(5), 537-549. https://10.21608/EJCHEM.2021.97832.4563
  11. Behboudi, F., Tahmasebi-Sarvestani, Z., Kassaee, M. Z., Modarres-Sanavy, S. A. M., Sorooshzadeh, A., & Mokhtassi-Bidgoli, A. (2019). Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. Journal of Plant Nutrition, 42(13), 1439-1451. https://doi.org/10.1080/01904167.2019.1617308
  12. Bekele, S., & Tilahun, K. (2007). Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agricultural Water Management, 89(1-2), 148-152. https://doi.org/10.1016/j.agwat.2007.01.002
  13. Brewster, J. L. )1979(. The response of growth rate to temperature in seedlings of several Allium crop species. Annals of Applied Biology, 93, 351-357.
  14. Bittelli, M., Flury, M., Campbell, G. S., & Nichols, E. J. (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology, 107(3), 167-175. https://doi.org/10.1016/S0168-1923(00)00242-2
  15. Boonlertnirun, S., Sarobol, E. D., Meechoui, S., & Sooksathan, I. (2007). Drought recovery and grain yield potential of rice after chitosan application. Agriculture and Natural Resources, 41(1), 1-6. https://doi.org/10.3390/plants10061160
  16. Bosekeng, G. (2012). Response of onion (Allium cepa) to sowing date and plant population.
  17. Brewster, J. L. (1990). Physiology of crop growth and bulbing. In: Rabinovitch HD, Brewster JL, eds. Onions and allied crops. Vol. I. Botany, physiology and genetics. Boca Raton, Florida, USA: CRC Press, Inc., 53-88.
  18. Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports, 5(1), 15195. https://doi:10.1038/srep15195
  19. Chaudhry, U. K., Gökçe, Z. N., & Gökçe, A. F. (2020). Effects of salinity and drought stresses on the physio-morphological attributes of onion cultivars at bulbification stage. International Journal of Agriculture and Biology, 24(6), 168-189. https://doi:10.17957/IJAB/15.1611
  20. Eksteen, G. J., Van Den Klashorst, E., & Van Ziji, B. (1997). Onions for export harvesting, handling and storage. Onions J.2. Agricultural Research Council, Vegetable and Ornamental Plant Institute, Pretoria, South Africa.
  21. Enchalew, B., Gebre, S. L., Rabo, M., Hindaye, B., Kedir, M., Musa, Y., & Shafi, A. (2016). Effect of deficit irrigation on water productivity of onion (Allium cepa) under drip. Irrigation & Drainage Systems Engineering, 5(172), 2. https://doi:10.4172/2168-9768.1000172
  22. FAO. (2018). FAOSTAT- countries by commodity. Available online at: http://www.fao.org/faostat/en/#rankings/countries_by_commodity
  23. FAO. (2020). Crop Production. data: http:/www.faostat.fao.org
  24. Farouk, S., & Amany, A. R. (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 14, 14-16. https://doi:10.4314/ejb.v14i1.2
  25. Fawzy, Z. F., El-Shal, Z. S., Li YunSheng, L. Y., Zhu OuYang, Z. O., & Sawan, O. M. (2012). Response of garlic (Allium sativum) plants to foliar spraying of some bio-stimulants under sandy soil condition. Journal of Applied Sciences Research, 8(2), 770-776. https://doi:10.5555/20123174116
  26. Geries, L. S. M., Omnia, H. S., & Marey, R. A. (2020). Soaking and foliar application with chitosan and nano chitosan to enhancing growth, productivity and quality of onion crop. Plant Cell Biotechnology and Molecular Biology, 20(2), 3584-91.
  27. Ghasemi Pirbalouti, A., Malekpoor, F., Salimi, A., & Golparvar, A. (2017). Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae, 217, 114-122. https://doi.org/10.1016/j.scienta.2017.01.031
  28. Ghodke, P. H., Shirsat, D. V., Thangasamy, A., Mahajan, V., Salunkhe, V. N., Khade, Y., & Singh, M. (2018). Effect of water logging stress at specific growth stages in onion crop. International Journal of Current Microbiology and Applied Sciences, 7(1), 3438-3448. https://doi.org/10.20546/ijcmas.2018.701.405
  29. Ghodke, P., Khandagale, K., Thangasamy, A., Kulkarni, A., Narwade, N., Shirsat, D., & Singh, M. (2020). Comparative transcriptome analyses in contrasting onion (Allium cepa) genotypes for drought stress. Frontiers in Plant Science, 15(8), e0237457. https://doi.org/10.1371/journal.pone.0237457
  30. Gürel, F., Öztürk, N. Z., & Uçarlı, C. (2016). Transcriptomic responses of barley (Hordeum vulgare) to drought and salinity. Plant Omics: Trends and Applications, 159-188. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_
  31. Gwandu, H. A., & Idris, F. (2016). Effect of irrigation intervals on growth and yield of onion (allium cepa) in Bunza, Kebbi state, Nigeria. International Journal of Research in Engineering and Science, 4(9), 42-45. https://doi.org/10.1155/2022/4655590
  32. Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., & Abdelaal, K. (2020). Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy, 10(5), 630. https://doi.org/10.3390/agronomy10050630
  33. Hao, T., Yang, Z., Liang, J., Yu, J., & Liu, J. (2023). Foliar application of carnosine and chitosan improving drought tolerance in bermudagrass. Agronomy, 13(2), 442. https://doi.org/10.3390/agronomy13020442
  34. Howlett, B. J. (2006). Secondary metabolite toxins and nutrition of plant pathogenic fungi. Current Opinion in Plant Biology, 9(4), 371-375. https://doi.org/10.1016/j.pbi.2006.05.004
  35. Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, 313-326. https://doi.org/10.1007/s12298-018-0633-1
  36. Islam, M. M., Kabir, M. H., Mamun, A. N. K., Islam, M., & Das, P. (2018). Studies on yield and yield attributes in tomato and chilli using foliar application of oligo-chitosan. GSC Biological and Pharmaceutical Sciences3(3), 20-28.
  37. Junaid, M. D., Chaudhry, U. K., & Gökçe, A. F. (2021). Climate change and plant growth–South Asian perspective. Climate Change Plants, 37-53. https://doi.org/10.1201/9781003109037
  38. Kazemi, A., & Ghorbanpour, M. (2017). Introduction to environmental challenges in all over the world. Medicinal Plants and Environmental Challenges, 25-48. https://doi.org/10.1007/978-3-319- 68717-9_2
  39. Kamenetsky, R., & Rabinowitch, H. D. (2006). The genus Allium: A developmental and horticultural analysis. Horticultural Reviews32, 329-378. https://doi.org/10.1002/9780470767986
  40. Khokhar, K. M. (2017). Environmental and genotypic effects on bulb development in onion–a review. The Journal of Horticultural Science and Biotechnology, 92(5), 448-454. https://doi.org/10.1080/14620316.2017.1314199
  41. Lei, C., Ma, D., Pu, G., Qiu, X., Du, Z., Wang, H., & Liu, B. (2011). Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua Industrial Crops and Products, 33(1), 176-182. https://doi.org/10.1016/j.indcrop.2010.10.001
  42. Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., & Yan, Y. (2017). Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. Journal of Proteome Research, 16(8), 3039-3052. https://doi.org/10.1021/acs.jproteome.7b00334
  43. Malerba, M., & Cerana, R. (2019). Recent applications of chitin-and chitosan-based polymers in plants. Polymers, 11(5), 839. https://doi.org/10.3390/polym11050839
  44. Mehta, I. (2017). Origin and history of onions. IOSR Journal of Humanities and Social Science, 22(9), 7-10. https://doi.org/10.9790/0837-2209130710
  45. Mirajkar, S. J., Dalvi, S. G., Ramteke, S. D., & Suprasanna, P. (2019). Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. International Journal of Biological Macromolecules, 139, 1212-1223. https://doi.org/10.1016/j.ijbiomac.2019.08.093
  46. Mubarak, I., & Hamdan, A. (2018). Onion crop response to regulated deficit irrigation under mulching in dry Mediterranean region. Journal of Horticultural Research, 26(1). https://doi.org/10.2478/johr-2018-0010
  47. Muhammad, A., Gambo, B. A., & Ibrahim, N. D. (2011). Response of onion (Allium cepa) to irrigation intervals and plant density in Zuru, Northern Guinea Savanna of Nigeria. Nigerian Journal of Basic and Applied Sciences, 19(2), 241-247. https://doi.org/10.1093/ajcn/51.2.241
  48. Nurga, Y., Alemayehu, Y., & Abegaz, F. (2020). Effect of deficit irrigation levels at different growth stages on yield and water productivity of onion (Allium cepa) at Raya Azebo Woreda, Northern Ethiopia. Ethiopian Journal of Agricultural Sciences, 30(3), 155-176. https://doi.org/10.14662/ARJASR2017.042
  49. Pavlović, N., Zdravković, M., Gvozdanović-Varga, J., Mladenović, J., Pavlović, R., & Zdravković, J. (2016). Heredity mode of onion (Allium cepa) bulb shape index. Ratarstvo i povrtarstvo, 53(3), 85-89.
  50. Pike, M. L. (1986). Onion breeding. In: Breeding Vegetable Crops, M. J. Bassett. The AVI publishing company. USA. 357-394.
  51. Piri, H., & Naserin, A. (2020). Effect of different levels of water, applied nitrogen and irrigation methods on yield, yield components and IWUE of onion. Scientia Horticulturae, 268, https://doi.org/10.1016/j.scienta.2020.109361
  52. Pongprayoon, W., Roytrakul, S., Pichayangkura, R., & Chadchawan, S. (2013). The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa). Plant Growth Regulation, 70, 159-173. https://doi.org/10.1007/s10725-013-9789-4
  53. Radman, R., Saez, T., Bucke, C., & Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnology and Applied Biochemistry, 37(1), 91-102. https://doi.org/10.1042/BA20020118
  54. Ramachandra, C. T., & Rao, P. S. (2008). Processing of Aloe vera leaf gel: a review. American Journal of Agricultural and Biological Sciences, 3(2), 502-510. https://doi.org/10.3844/ajabssp.2008.502.510
  55. Rabêlo, V. M., Magalhães, P. C., Bressanin, L. A., Carvalho, D. T., Reis, C. O. D., Karam, D., & Souza, T. C. D. (2019). The foliar application of a mixture of semisynthetic chitosan derivatives induces tolerance to water deficit in maize, improving the antioxidant system and increasing photosynthesis and grain yield. Scientific Reports, 9(1), 8164. https://doi.org/10.1038/s41598-019-44649-7
  56. Rameshjan, Y. (2023). The effects of planting methods and patterns on agroecological characteristics of onion (Allium cepa) in two heterogeneous microclimates in Hormozgan province. Ph.D. Dissertation Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad. (in Persian with English abstract).
  57. Rao, N. S., Laxman, R. H., & Shivashankara, K. S. (2016). Physiological and morphological responses of horticultural crops to abiotic stresses. Abiotic Stress Physiology of Horticultural Crops, 3-17. https://doi.org/10.1007/978-81-322-2725-0_1
  58. Rhaman, M. S., Rauf, F., Tania, S. S., & Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in Crop Science, 5(2), 8-19. https://doi.org/10.9734/AJRCS/2020/v5i230091
  59. Shamekh, M., Jafari, L., & Farzin, A. (2021). Ameliorating effect of proline, chitosan and its derivatives on photosynthetic pigments, chlorophyll fluorescence indices, qualitative characteristics and yield of greenhouse tomato (Lycopersicon esculentum) under deficit irrigation conditions. Journal of Plant Process and Function Iranian Society of Plant Physiology, 10(41), 77-95. (in Persian with English abstract). 20.1001.1.23222727.1400.10.41.18.8
  60. Singh, V. K., Singh, A. K., Singh, P. P., & Kumar, A. (2018). Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agriculture, Ecosystems & Environment, 267, 129-140. https://doi.org/10.1016/j.agee.2018.08.020
  61. Tadesse, T., Sharma, P. D., & Ayele, T. (2022). Effect of the Irrigation Interval and Nitrogen Rate on Yield and Yield Components of Onion (Allium cepa) at Arba Minch, Southern Ethiopia. Advances in Agriculture, 2022. https://doi.org/10.1155/2022/4655590
  62. Turhan, A., & Kuşçu, H. (2020). The Influence of irrigation water salinity and humic acid on nutrient contents of onion (Allium cepa). Journal of Agricultural Sciences, 26(2), 147-153. https://doi.org/10.15832/ankutbd.459907
  63. Wakchaure, G. C., Minhas, P. S., Meena, K. K., Singh, N. P., Hegade P. M., & Sorty, A. M. (2018). Growth, bulb yield, water productivity and quality of onion (Allium cepa ) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators. Agricultural Water Management, 199, 1-10. https://doi.org/10.1016/j.agwat.2017.11.026
  64. Wang, Xh. H., Li, D. P., Wang, W. G., Feng, Q. L., Cui, F. Z., Xu, Y. X., Song, X. H., & Vander Werf, M. (2003). Cross linked collagen/chitosan matrix for artificial livers. Biomat, 24, 3213-3220. https://doi.org/10.1016/s0142-9612(03)00170-4.
  65. Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215-18220. https://doi.org/10.1073/pnas.0805554105
  66. Yin, H., Fretté, X. C., Christensen, L. P., & Grevsen, K. (2012). Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare hirtum). Journal of Agricultural and Food Chemistry, 60(1), 136-143. https://doi.org/10.1021/jf204376j
  67. Zayed, M. M., Elkafafi, S. H., Zedan, A. M., & Dawoud, S. F. (2017). Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production, 8(5), 577-585. https://doi.org/10.21608/JPP.2017.40468
  68. Zhao, D. X., Fu, C. X., Han, Y. S., & Lu, D. P. (2005). Effects of elicitation on jaceosidin and hispidulin production in cell suspension cultures of Saussurea medusa. Process Biochemistry, 40(2), 739-745. https://doi.org/10.1016/j.procbio.2004.01.040
  69. Zhang, C., Yan, Q., Cheuk, W. K., & Wu, J. (2004). Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Medica, 70(02), 147-151. https://doi.org/10.1055/s-2004-815492
  70. Zhang, Y., Mian, M. A. R., & Bouton, J. H. (2006). Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Science, 46(2), 497-511. https://doi.org/10.2135/cropsci2004.0572
  71. Zheng, J., Huang, G., Wang, J., Huang, Q., Pereira, L. S., Xu, X., & Liu, H. (2013). Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China. Irrigation Science, 31, 995-1008. https://doi.org/10.1007/s00271-012-0378-5
CAPTCHA Image