تأثیر کود نیتروژن بر دریافت و کارایی استفاده از تابش در دو رقم کلزای بهاره

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

چکیده

زیست‌توده گیاهی بالای سطح زمین را می‌توان به‌صورت حاصل‌ضرب تابش تجمعی دریافت شده (IPAR) توسط سایه‌انداز گیاهی و کارایی استفاده از تابش (RUE) بیان نمود. در این مطالعه تأثیر تیمارهای مصرف نیتروژن (N) بر IPAR و RUE دو رقم کلزای بهاره (Hyola 401 و دلگان) بررسی شد. آزمایش مزرعه‌ای در سال ‌‌زراعی 96-1395 به‌صورت کرت‌های خردشده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در مزرعه پژوهشی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان اجرا شد. میزان مصرف N در هفت سطح صفر، 50، 100، 150، 200، 250 و 300 کیلوگرم در هکتار به‌عنوان عامل اصلی و نوع رقم کلزا در دو سطح به‌عنوان عامل فرعی در نظر گرفته شد. نتایج نشان داد که پاسخ زیست‌توده بالای سطح زمین به فراهمی N در هر دو رقم کلزای مطالعه شده به تغییر هردوی IPAR و RUE مربوط بود. کل IPAR تجمعی در طی دوره رشد در دو رقم Hyola 401 و دلگان در شرایط مصرف 200 کیلوگرم N در هکتار به‌ترتیب در حدود 27 و 35 درصد بیشتر از تیمار شاهد بود. در هر دو رقم کلزا، IPAR به‌شدت به LAI و LAD وابسته بود. به این معنی که، مصرف N با افزایش LAI و LAD منجر به افزایش IPAR شد. مصرف N تأثیری بر ضریب استهلاک نوری (K) سایه‌انداز گیاهی نداشت و این ضریب برای رقم Hyola 401 معادل 65/0 (± 02/0) و برای رقم دلگان معادل 73/0 (± 02/0) برآورد شد. بسته به فراهمی N، برآورد RUE برای رقم دلگان بین 02/2 (تیمار شاهد) تا 25/3 گرم بر مگاژول (200 کیلوگرم N در هکتار) و برای رقم Hyola 401 بین 86/1 (تیمار شاهد) تا 62/3 گرم بر مگاژول (300 کیلوگرم N در هکتار) متغیر بود.

کلیدواژه‌ها


1. Abeledo, G., Calderini, D., and Slafer, G. 2003. Genetic improvement of yield responsiveness to nitrogen fertilization and its physiological determinants in barley. Euphytica 133 (3): 291-298.
2. Ayaz, S., McKenzie, B., McNeil, D., and Hill, G. 2004. Light interception and utilization of four grain legumes sown at different populations and depths. The Journal of Agricultural Science 142 (3): 297-308.
3. Bassu, S., Giunta, F., and Motzo, R. 2011. Effects of sowing date and cultivar on radiation use efficiency in durum wheat. Crop and Pasture Science 62 (1): 39-47.
4. Colnenne, C., Meynard, L. M., Roche, R., and Reau, R. 2002. Effects of nitrogen deficiencies on autumnal growth of oilseed rape. European Journal of Agronomy 17 (1): 11-28.
5. Dreccer, F., Schapendonk, A. H. C. M., Slafer, G. A., and Rabbinge, R. 2000. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant and Soil 220 (1-2): 189-205.
6. Gabrielle, B., Denoroy, P., Gosse, G., Justes, E., and Andersen, M. N. 1998. Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Research 57 (1): 95-111.
7. Jamieson, P. D., Martin, R. J., Francis, G. S., and Wilson, D. R. 1995. Drought effects on biomass production and radiation-use efficiency in barley. Field Crops Research 43 (2-3): 77-86.
8. Jeuffroy, M. H., and Recous, S. 1999. Azodyn: a simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization. European Journal of Agronomy 10 (2): 121-144.
9. Justes, E., Denoroy, P., Gabrielle, B., and Gosse, G. 2000. Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape. European Journal of Agronomy 13 (2-3): 165-177.
10. Kemanian, A. R., Stöckle, C. O., and Huggins, D. R. 2004. Variability of Barley Radiation-Use Efficiency. Crop Science 44 (5): 1662-1672.
11. Masomipour, A., Torabi, B., and Rahimi, A. 2016. Studing extinction coefficient and radiation use efficiency in different cultivars of Safflower under different levels of Nitrogen (N) fertilizer. Electronic Journal of Crop Production 9 (3): 67-86. (in Persian with English abstract).
12. Massignam, A., Chapman, S., Hammer, G., and Fukai, S. 2009. Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. Field Crops Research 113 (3): 256-267.
13. Mendham, N. J. 1995. Physiological basis of seed yield and quality in oilseed rape. Proceedings of the Ninth International Rapeseed Congress, Cambridge.
14. Mendham, N. J., Russell, J., and Jarosz, N, K. 1990. Response to sowing time of three contrasting Australian cultivars of oilseed rape (Brassica napus). Journal of Agricultural Science 114 (3): 275-283.
15. Muurinen, S., and Peltonen-Sainio, P. 2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions. Field Crops Research 96 (2-3): 363-373.
16. Olesen, J. E., Jorgensen, L. N., and Mortensen, J. V. 2000. Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. Ii. Radiation interception and conversion. The Journal of Agricultural Science 134 (1): 13-23.
17. Plenet, D., Mollier, A., and Pellerin, S. 2000. Growth analysis of maize field crops under phosphorus deficiency. II. Radiation use efficiency, biomass accumulation and yield components. Plant and Soil 224 (2): 259-272.
18. Ratjen, A. M., and Kage, H. 2013. Is mutual shading a decisive factor for differences in overall canopy specific leaf area of winter wheat crops? Field Crops Research 149: 338-346.
19. Salvagiotti, F., and Miralles, D. 2008. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. European Journal of Agronomy 28 (3): 282-290.
20. Sandana, P., and Pinochet, D. 2011. Ecophysiological determinants of biomass and grain yield of wheat under P deficiency. Field Crops Research 120 (2): 311-319.
21. Sandana, P., Ramirez, M., and Pinochet, D. 2012. Radiation interception and radiation use efficiency of wheat and pea under different P availabilities. Field Crops Research 127: 44-50.
22. Sieling, K., Böttcher, U., and Kage, H. 2016. Dry matter partitioning and canopy traits in wheat and barley under varying N supply. European Journal of Agronomy 74: 1-8.
23. Sinclair, T. R., and Horie, T. 1989: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Science 29 (1): 90-98.
24. Sinclair, T. R., and Muchow, R. 1999. Radiation use efficiency. Advances in Agronomy 65: 215-265.
25. Soltani, A., Robertson, M. J., Rahemi-Karizaki, A., Poorreza, J., and Zarei, H. 2006. Modeling Biomass Accumulation and Partitioning in Chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science 192 (5): 379-389.
26. Valle, S., Carrasco, J., Pinochet, D., and Calderini, D. 2009. Al toxicity effects on radiation interception and radiation use efficiency of Al-tolerant and Al-sensitive wheat cultivars under field conditions. Field Crops Research 114 (3): 343-350.
27. Watson, D. J. 1947. Comparative physiological studies on the growth of field crops I. Variation in NAR and LAR between species and varieties and within and between years. Annals of Botany 11 (1): 41-46.
28. Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., and Spiertz, H. J. 2003. A flexible sigmoid function of determinate growth. Annals of Botany 91 (3): 361-71.
29. Zhou, Z., Plauborg, F., Kristensen, K., and Andersen, M. N. 2017. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agricultural and Forest Meteorology 232: 595-605.
CAPTCHA Image