کاهش اثرات تنش آبی در تریتیکاله با استفاده از سامانه‌های کود زیستی-آلی و کشت مخلوط در یک منطقه خشک از جنوب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد بخش اگرواکولوژی، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، شیراز، ایران

2 بخش اگرواکولوژی، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، شیراز، ایران

چکیده

به‌منظور بررسی عملکرد و اجزای عملکرد تریتیکاله (× Triticosecale Wittmack) در کشت خالص و کشت مخلوط با نخود (Cicer arietinum L.) تحت شرایط تنش آبی، آزمایشی به‌صورت اسپلیت فاکتوریل در قالب طرح بلوک کامل تصادفی با سه تکرار در مزرعه پژوهشی دانشکده کشاورزی و منابع طبیعی داراب- دانشگاه شیراز در سال زراعی 1399ـ1398 اجرا شد. تیمارها در دو سطح آبیاری [1- مطلوب: آبیاری بر اساس نیاز آبی گیاه تا مرحله‌ی رسیدگی فیزیولوژیک و 2- تنش آبی: آبیاری بر اساس نیاز آبی گیاه تا مرحله‌ی شیری] به‌عنوان عامل اصلی و سه منبع کودی [1- شیمیایی: (50 کیلوگرم فسفر بر هکتار + 150 کیلوگرم نیتروژن بر هکتار)، 2- زیستی-آلی: (کود گوسفندی 40 تن بر هکتار + تلقیح با باکتری‌های سودوموناس فلورسنس (Pseudomonas florescence) و آزوسپیریلوم براسیلنس (Azospirillum brasilense))، 3ـ تلفیقی: (25 کیلوگرم فسفر بر هکتار + 75 کیلوگرم نیتروژن بر هکتار +20 تن کود گوسفندی بر هکتار + تلقیح با باکتری‌های سودوموناس فلورسنس و آزوسپیریلوم براسیلنس)] و دو نوع کشت [1- کشت خالص تریتیکاله، 2- کشت مخلوط تریتیکاله/ نخود (1:1)] به‌عنوان عوامل فرعی بودند که به‌صورت فاکتوریل در کرت‌های فرعی قرار گرفتند. نتایج به‌دست‌آمده از این پژوهش نشان داد، عملکرد و اجزای عملکرد به‌واسطه تنش آبی کاهش یافت. اما، این کاهش‌ها در شرایط کشت مخلوط نسبت به خالص کمتر بود. تنش آبی، عملکرد دانه را در همه سامانه‌های کودی کاهش داد؛ اما، این کاهش در تیمارهای مختلف متفاوت بود. بیشترین کاهش عملکرد در تیمار کود شیمیایی (60.4 درصد) و کمترین کاهش (30.7 درصد) در شرایط استفاده از کود زیستی-آلی مشاهده نسبت به آبیاری مطلوب شد. با توجه به کمترین کاهش عملکرد در تیمار کود زیستی-آلی و کشت مخلوط تریتیکاله و نخود در پاسخ به تنش آبی، استفاده از این تیمارها در شرایطی که احتمال وقوع تنش آبی پس از گلدهی بالا باشد، پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

Abdolahi, A., Dabbagh Mohammadinasab, A., & Nasrolahzadeh, S. (2015) Investigation of yield and some traits of wheat and weeds in intercropping with chickpea under nitrogen management in rainfed condition. Cereal Research, 5 (3), 247-259. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.22520163.1394.5.3.4.9
Ahmadvand, G., & Hajinia, S. (2016). Ecological aspects study of replacement intercropping patterns of Soybean (Glycine max L.) and Millet (Panicum miliaceum L.). Journal of Agroecology, 7(4), 485-498.
Asadi, Gh. A., and Khorramdel, S. (2014). Ratio effects of barley intercropped with hairy vetch on plant nitrogen content, population and diversity of weeds and yield. Gorgan university agriculture science and natural resources, 7(1), 131-156. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.2008739.1393.7.1.8.1
Babalola, O. (1980). Water relations of three cowpea cultivars (Vigna unguiculata L.). Plant and Soil, 56(1): 59-69. https://doi.org/10.1007/bf02197953
Bahari Saravi, S. H., & Pirdashti, H. A. (2013). Evaluation of application of plant growth promoting bacteria (PGPR) and phosphate solvent (PSM) on yield and yield components of wheat (cultivar N80) at different levels of nitrogen and phosphorus in greenhouse conditions. Iranian Journal of Field Crops Research, 10(4), 681-689. (In Persian).
Barati, S., Basiri, M., Vahabi, M. R., & Mosadeghi, M. R. (2020). Effects of plant density and drought stress on Alfalfa Leaf Water potential (Medicago sativa L.) and Flesh Grass (Bromus tomentellus Boiss) and Soil weight moisture in sole cropping and intercropping. Range Land, 13(1), 65-75. http://dorl.net/dor/20.1001.1.20080891.1398.13.1.6.7
Barati, V., & Bijanzadeh, E. (2020). Grain Yield and its Components of triticale as affected by Silicon Foliar Application, Nitrogen Fertilizer and Water Stress in Reproductive Phase. Iranian Journal of Field Crops Research, 18(4), 435-449. (In Persian with English abstract). https://doi.org/10.22067/jcesc.2020.88386 
Barati, V., & Ghadiri, H. (2016). Effects of Drought Stress and Nitrogen Fertilizer on Yield, Yield Components and Grain Protein Content of Two Barley Cultivars. Journal of Crop Production and Processing, 6(20), 191-207. (In Persian with English abstract). https://doi.org/10.18869/acadpub.jcpp.6.20.191
Barati, V., Ghadiri, H., Zand-Parsa, S., & Karimian, N. (2015). Nitrogen and water use efficiencies and yieldresponse of barley cultivars under different irrigation and nitrogen regimes in a semi-arid mediterranean climate. Archives of Agronomy and Soil Science, 61(1), 15-32. https://doi.org/10.1080/03650340.2014.921286
Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-micro biome interactions. Journal of Soil Science and Plant Nutrition, 15(2), 261-282. https://doi.org/10.4067/s0718-95162015005000021
Barker, A. V. (2016). Science and Technology of Organic Farming. Emam Reza University, Mashhad, Iran. (In Persian).
Bedoussac, L., & Justes, E. (2011). Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant and Soil, 330(1), 37-54. https://doi.org/10.1007/s11104-010-0303-8
Bhattacharjee, R., & Dey, U. (2014). Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8(24), 2332-2343. https://doi.org/10.5897/ajmr2013.6374
Bouzarjomehri, K., Khatami, S. S., Zarrin, A., & Falsolayman, M. (2022). Analysis of water resources management studies in Iran and the world. Journal of Geography and Environmental Hazards, 11(2). (In Persian with English abstract). https://doi.org/10.22067/geoeh.2022.73891.1136
Brooker, R. W., Bennett, A. E., Cong, W. F., Daniell, T. J., George, T. S., Hallett, P. D., Hawes, C., Iannetta, P. P., Jones, H. G., Karley, A. J., & Li, L. (2015). Improving intercropping: a synthesis of research in agronomy. New Phytologist, 206(1), 107-117. https://doi.org/10.1111/nph.13132
Cassan, F., & Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biology and Biochemistry, 103, 117-130. https://doi.org/10.1016/j.soilbio.2016.08.020
Chamkhi, I., Cheto, S., Geistlinger, J., Zeroual, Y., Kouisni, L., Bargaz, A., & Ghoulam, C. (2022). Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Products, 183, 114958. https://doi.org/10.1016/j.indcrop.2022.114958
Chapagain, T., & Riseman, A. (2014). Intercropping wheat and beans: effects on agronomic performance and land productivity. Crop Science, 54(5), 2285-2293. https://doi.org/10.2135/cropsci2013.12.0834
Cominelli, E., & Tonelli, C. (2010). Transgenic crops coping with water scarcity. New Biotechnology, 27(5), 473-477. https://doi.org/10.1016/j.nbt.2010.08.005
Diaz-Zorita, M., & Fernandez-Canigia, M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45(1), 3-11. https://doi.org/10.1016/j.ejsobi.2008.07.001
Emam, Y. (2007). Cereal production. Shiraz University, Shiraz, Iran. (In Persian).
Ercoli, L., Lulli, L., Mariotti, M., Masoni, A., & Arduini, I. (2008). Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 28: 138-147. https://doi.org/10.1016/j.eja.2007.06.002
Farahmand, A., & Liaghat, A. (2010). Evaluation of soil nitrate contamination due to irrigation water and nitrogen fertilizer. Water Resources Engineering, 4(10), 85-92. (In Persian).
Feledyn-Szewczyk, B., Nakielska, M., Jonczyk, K., Berbec, A. K., & Kopinski, J. (2020). Assessment of the suitability of 10 winter triticale cultivars (× Triticosecale Wittmac) for organic agriculture: Polish case study. Agronomy, 10, 1144. https://doi.org/10.3390/agronomy10081144
Frederick, J. R., & Camberato, J. J. (1994). Leaf net CO2-exchange rate and associated leaf traits of winter wheat grown with various spring nitrogen fertilization rates. Crop Science, 34, 432-439. https://doi.org/10.2135/cropsci1994.0011183x003400020024x
Garabet, S., Wood, M., & Ryan, J. (1998). Nitrogen and water effects on wheat yield in a Mediterranean type climate. I. Growth, water-use and nitrogen accumulation. Field Crops Research, 57, 309-318. https://doi.org/10.1016/s0378-4290(98)00075-6
Ghasemi, A., Ghanbari, A., Fakheri, B. A., & Fanaie, H. R. (2016). Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L.) influenced by tillage managements. Journal of Agroecology, 7(4), 499-512.
Grimes, D. W., Yamada, H., & Hughes, S. W. (1987). Climate-normalized cotton leaf water potentials for irrigation scheduling. Agricultural Water Management, 12(4), 293-304. https://doi.org/10.1016/0378-3774(87)90004-7
Haynes, R. J. (1980). Competitive aspects of the grass-legume association. Advances in Agronomy, 33, 227-261. https://doi.org/10.1016/s0065-2113(08)60168-6
Izan, T., Javanmard, A., Shekari, F., & Abbasi, A. (2020). Evaluation of Yield, Yield Components and Some Physiological Traits of Sunflower with Integrative Application of Biological, Chemical, and Organic Fertilizers under Different Irrigation Levels. Journal of Agricultural Science and Sustainable Production, 30(3), 87-111. (In Persian with English abstract).
Ledgard, S. F., & Steele, K. W. (1992). Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil, 141(1), 137-153. https://doi.org/10.1007/bf00011314
Liu, X., Liu, W., Tang, Q., Liu, B., Wada, Y., & Yang, H. (2022). Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth's Future, 10, e2021EF002567. https://doi.org/10.1029/2021ef002567
Mazaheri, D. (1998). Intercropping. Tehran University, Tehran, Iran. (In Persian).
Mcgoverin, C. M., Snyders, F., Muller, N., Botes, W., Fox, G., & Manley, M. (2011). A review of triticale uses and the effect of growth environment on grain quality. Journal of the Science of Food and Agriculture, 91, 1155-1165. https://doi.org/10.1002/jsfa.4338
Moradi, M., Soleymanifard, A., Naseri, R., Ghasemi, M., & Abromand, K. (2016). The changes of agronomic traits and harvest index of wheat under the effect of manure and plant growth promotion bacteria at different levels of nitrogen. Crop Physiology Journal, 7(28), 73-90. (In Persian).
Munareto, J. D., Martin, T. N., Fipke, G. M., Cunha, V. D. S., & Rosa, G. B. D. (2019). Nitrogen management alternatives using Azospirillum brasilense in wheat. Pesquisa Agropecuária Brasileira, 54, e00276. https://doi.org/10.1590/s1678-3921.pab2019.v54.00276
Nabati, J., & Yousefi, A. (2019). Biological fertilizers approach for ecological compression. First Conference on Basic Research in Agricultural and Environmental Sciences. (In Persian with English abstract).
Naiman, A. D., Latronico, A., & de Salamone, I. E. G. (2009). Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. European Journal of Soil Biology, 45(1), 44-51. https://doi.org/10.1016/j.ejsobi.2008.11.001
Nasiri, Y., Musavi Zadeh, S. A., & Asadi, M. (2019). Effect of application of livestock, biological and chemical fertilizers on yield, yield components and some morphological characteristics of wheat. Agricultural Science and Sustainable Production, 30(1), 313-328. (In Persian).
Neugschwandtner, R. W., & Kaul, H. P. (2014). Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops. Field Crops Research, 155, 159-163. https://doi.org/10.1016/j.fcr.2013.09.010
Niazi Ardakani, M., Barati, V., Bijanzadeh, E., & Behpouri, A. (2020). Effects of different nitrogen fertilizer sources and crop residues on yield and yield components of barley (Hordeum vulgare L.) under late season water stress. Journal of Agroecology, 12(1), 107-126. (In Persian with English abstract). https://doi.org/10.22067/jag.v12i1.79989
Pelzer, E., Hombert, N., Jeuffroy, M. H., & Makowski, D. (2014). Meta‐analysis of the effect of nitrogen fertilization on annual cereal-legume intercrop production. Agronomy Journal, 106(5), 1775-1786. https://doi.org/10.2134/agronj13.0590
Rezaei-Chiyaneh, E., Rasouli, Y., Jalilian, J., & Ghodsi, M. (2019). Evaluation of quantitative and qualitative yield of chickpea (Cicer arietinum L.) and barley (Hordeum vulgare L.) in intercropping affected by biological and chemical fertilizers in supplemental irrigation condition. Agroecology, 11(1).‏ (In Persian with English abstract).
Risse, L.M., Cabrera, M. L., Franzluebbers, A. J., Gaskin, J. W., Gilley, J. E., Killorn, R., Radcliffe, D. E., Tollner, W. E., & Zhang, H. (2006). Land application of manure for beneficial reuse. Biological Systems Engineering: Papers and Publications, 283-316.
Shata, S. M., Mahmoud, A., & Siam, S. (2007). Improving calcareous soil productivity by integrated effect of intercropping and fertilizer. Research Journal of Agriculture and Biological Science, 3(6), 733-739.
Sieling, K., Schroder, H., Finck, M., & Hanus, H. (1998). Yield, N uptake and apparent N use efficiency of winter wheat and winter barley grown in different cropping systems. The Journal of Agricultural Science, 131, 375-387. https://doi.org/10.1017/s0021859698005838
Singh, J. S., Pandey, V. C., and Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainableagriculture and environmental development. Agriculture, ecosystems and environment, 140(3-4), 339-353.
Sori, S., Amirnia, R., Rezaei-Chiyaneh, E., and Sheikh, F. (2020). Evaluation of Yield and Yield Components of Different Faba Bean (Vicia faba L.) Varieties in Intercropping with Triticale (Tritico secale). Journal Of Agroecology, 12(1), 143-159. https://doi.org/10.22067/jag.v12i1.81918
Tarang, E., Ramroudi, M., Galavi, M., Dahmardeh, M., & Mohajeri, F. (2013). Evaluation grain yield and quality of corn (Maxima CV) in responses to Nitroxin bioferilizer and chemical fertilizers. International Journal of Agriculture and Crop Sciences, 5, 683-687.
Tavakoli, M., & Jalali, A. H. (2016). Effect of different bio fertilizers and nitrogen fertilizer levels on yield and yield components of wheat. Journal of Crop Production and Processing, 6(21), 34-45. (In Persian with English abstract). https://doi.org/10.18869/acadpub.jcpp.6.21.34
Tien, T. M., Gaskins, M. H., & Hubbell, D. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, 37(5): 1016-1024. https://doi.org/10.1128/aem.37.5.1016-1024.1979
Van Herwaarden, A. F. (1996). Haying-off in wheat, enduring myth or current problem. In Proceedings of the 8th Australian Agronomy Conf. CSIRO. ASA, Australia.
Van Herwaarden, A. F., Farquhar, G. D., Angus, J. F., Richards, R. A., & Howe, G. N. (1998). Haying-off, the negative grain yield response of dryland wheat to nitrogen fertilizer I. Biomass, grain yield, and water use. Australian Journal of Agricultural Research, 49, 1067-1081. https://doi.org/10.1071/a97039
Wojcik-Gront, E., & Studnicki, M. (2021). Long-term yield variability of triticale (× Triticosecale wittmack) tested using a cart model. Agriculture, 11, 92. https://doi.org/10.3390/agriculture11020092
Zadoks, J.C., Chang, T.T., & Konzak, C.F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242, 126626. https://doi.org/10.1016/j.micres.2020.126626
CAPTCHA Image