Determination of Genetic Coefficients of Some Maize (Zea mays L.) Cultivars of Iran for Application in Crop Simulation Models

Document Type : Research Article

Authors

1 Shahid Beheshti University

2 University of Lorestan

Abstract

A field experiment was conducted at the research field of the University of Lorestan in 2011 as a randomized complete block design with three replications to estimate genetic coefficients of some maize (Zea mays L.) cultivars. Treatments include six maize cultivars (T.V.C.767 and S.C.704 from late maturing group, T N.S640 and Maxima from mid-maturing group, and Koppany and D.C.370 from early maturing group). Results showed that there were significant differences among cultivars in terms of stem dry weight, maximum number of kernel per ear, thermal time from the flag leaf appearance to flowering, thermal time from flowering to maturity, phyllochron interval, grain weight, maximum plant height and minimum growth degree days during vegetative period. The highest (649.2) and lowest (350.6) maximum number of kernel per ear belonged to cultivars S.C.704 and D.C.370, respectively. Also, the highest and lowest stem dry weight, phyllochron interval and maximum plant height belonged to cultivars S.C.704 and D.C.370, respectively. Among genetic coefficients, the minimum growth degree days required for vegetative growth and the maximum number of kernel per ear had the greatest correlation with grain yield (r=0.72 and r=0.84, respectively). Overall, the results portrayed that the estimated genetic coefficients of the cultivars are not identical in different models and varied in a defined range.

Keywords


1- افشار، ا.، و ز. دهقانپور. 1389. تعیین تاریخ کاشت مناسب برای ارقام جدید زودرس ذرت در کشت دوم در مناطق معتدل استان فارس. مجله به زراعی نهال و بذر 2 (2): 191 -162.
2- سلطانی، ا.، و ب. ترابی. مدلسازی گیاهان زراعی، مطالعات موردی. انتشارات جهاد دانشگاهی. مشهد. 232 ص.
3- روضاتی، ن.، ا. غلامی، و ح. اصغری. 1389. مطالعه اثرات سطوح مختلف تقسیط نیتروژن و رقم بر صفات زراعی و عملکرد ذرت دانه ای. مجله الکترونیک تولید گیاهان زراعی 4 (2): 16 -1.
4- سید شریفی، ر. و ک. خاوازی. 1391. تأثیر پرایمینگ بذر با باکتری های محرک رشد بر فیلوکرون و سرعت ظهور برگ ذرت (Zea maize L.). مجله زیست شناسی ایران 25 (2): 193 -183.
5- چوکان، ر. و ع. شیرخانی. 1389. برآورد نیاز واحدهای حرارتی برای گروه های مختلف رسیدگی هیبریدهای ذرت دانه ای در کرمانشاه. مجله به زراعی نهال و بذر 2 (3): 284 -259.
6- چوکان، ر. و ع. شیرخانی. 1389. واکنش گروه های مختلف رسیدگی هیبریدهای ذرت دانه ای به تاریخ های کاشت در کرمانشاه. مجله به زراعی نهال و بذر 2 (3): 258 -233.
7- حجازی ا. 1372. تکنولوژی بذر. انتشارات دانشگاه تهران. ترجمه. 442 ص.
8- قمری، م.، ب. اندرزیان، ع. بخشنده، م. قرینه، و ق. فتحی. 1389. شبیه سازی اثرات تنش خشکی و نیتروژن بر عملکرد، کارایی مصرف آب و نیتروژن با استفاده از مدل شبیه سازی CERES- Maize در شرایط آب و هوایی اهواز. یازدهمین کنگره علوم زراعت و اصلاح نباتات دوم تا چهارم مرداد ماه 1389، دانشگاه شهید بهشتی. ص. 2739- 2736.
9- ماهرو کاشانی، ا .، ا. سلطانی، س. گالشی و م. کلاته عربی. 1389. برآورد ضرایب ژنتیکی و ارزیابی مدل DSSAT برای ارقام استان گلستان. مجله الکترونیک تولید گیاهان زراعی 3 (2): 253 -229.
10- بی نام. آمارنامه کشاورزی. جلد اول محصولات زراعی. سال زراعی 88-1387. وزرات جهاد کشاورزی.
11- Abasi, S. A. A., and S. A. Atilade. 2005. Sowing-date studies on maize (Zea mays L.) under rainforest conditions: Effects of sowing date on the vegetative and flowering stages. Department of Plant Science Obafemi Awolowo University, Ile-Ife, Nigeria.
12- Ahmad, A., and M. Saleem. 2003. Path coefficient analysis in Zea mays L. International Journal of Agricultural and Biological Engineering 5: 245-248.
13- Akbar, M., S. Shakoor, A. Hussain, and M. Sarwar. 2008. Evaluation of maize three way crosses through genetic variability, broad sense heritability, character association and path analysis. Journal of Agricultural Research 46: 39-45.
14- Anapalli, S. S., L. Ma, D. C. Nielsen, M. F. Vigil, and L. R. Ahuja. 2005. Simulating Planting Date Effects on Corn Production Using RZWQM and CERES-Maize Models. Agronomy Journal 97: 58-71.
15- Borras, L., G. A. Slafer, and M. E. Otegui. 2004. Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research 86: 131-146.
16- Borras, L., and M. E. Otegui. 2001. Maize kernel weight response to post – flowering source – sink ratio. Crop Science 41: 1816-1822.
17- Brisson, N., C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P. Bertuzzi, P. Burger, F. Bussiere, Y. M. Cabidoche, P. Cellier, P. Debaeke, J. P. Gaudillere, C. Henault, F. Maraux, B. Seguin, and H. Sinoquet. 2003. An overview of the crop model STICS. European Journal of Agronomy 18: 309-332.
18- Challinor, A. J., T. R. Wheeler, P. Q. Craufurd, and D. I. F. Grimes. 2004. Design and optimization of a large-area process-based model for annual crops. Agricultural and Forest Meteorology 124: 99-120.
19- Clark, L. E. 1997. Grain sorghum production in the Texas rolling plains. Texas A&M University Agricultural Research and Extension Center at Chillicothe-Vernon. Technical Report 97-1.
20- Cox, W.J. 1996 .Whole plant physiological and yield response of maize to plant density. Agronomy Journal 88: 489-496.
21- Dwyer, L. M., L. Evanson, and R. I. Hamilton. 2003. Maize physiological traits related to grain yield and harvest moisture in mid-to short season environments. Crop Science 34: 985-992.
22- Ei-Shouny, K. A., O. H. Ei-Bagowly, K. I. M. Ibrahim, and S. A. Ai-Ahmad. 2005. Correlation and path analysis in four yellow maize crosses under two planting dates. Arab Universities Journal of Agricultural Research 13: 327-339.
23- Fosu-Mensah, B. Y., D. S. MacCarthy, P. L. G. Vlek, and E. Y. Safo. 2012. Simulating impact of seasonal climatic variation on the response of maize (Zea mays L.) to inorganic fertilizer in sub-humid Ghana. Nutrient Cycling in Agroecosystems 94: 255-271.
24- Gabrielle, B., P. Denoroy, G. Gosse, E. Justes, and M. N. Andersen. 1998b. A model of leaf area development and senescence of winter oilseed rape. Field Crops Research 57: 209-222.
25- Gynes-Hegy, Z., L. Kizmus, L. Zsubori, and L. C. Marton. 2002. Plant height and height of the main ear in maize (Zea mays L.) at different locations and different plant densities. Acta Agronomica Hungarica 50: 75-84.
26- Harris, D., A. Rashid, G. Miraj, M. Arif, and H. Shah. 2007. On farm seed priming with zinc sulphate solution: A cost effect way to increase the maize yields of resource-poor farmers. Field Crops Research 102:119-127.
27- Hartung. R. C., C. G. Poneleit, and P. L. Cornelius. 1989. Direct and correlated responses to selection for rate and duration of grain fill in maze. Crop Science 29: 740-745.
28- Hoogenboom, G., J. W. Jones, C. H. Porter, P. W. Wilkens, K. J. Boote, W. D. Batchelor, L. A. Hunt, and G. Y. Tsuji, (Editors). 2003. Decision Support System for Agrotechnology Transfer Version 4.0. Volume 1: Overview. University of Hawaii, Honolulu, HI.
29- Jego, G., E. Pattey, G. Bourgeois, C. F. Drury, and N. Tremblay. 2011. Evaluation of the STICS crop growth model with maize cultivar parameters calibrated for Eastern Canada. Agronomy for Sustainable Development 31: 557-570.
30- Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie. 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235- 265.
31- Jones, R. J., and S. R. Simmons. 1983. Effect of altered source – sink ratio on growth of maize kernels. Crop Science 23: 129-134.
32- Keating, B. A., P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267-288.
33- Koester, R. P., P. H. Sisco, and C. W. Stuber. 1993. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Science 33: 1209-1216.
34- Liu, W. T. H., D. M. Botner, and C. M. Sakamoto. 1989. Application of CERES-Maize model to yield prediction of a Brazilian maize hybrid. Agricultural and Forest Meteorology 45: 299-312.
35- MacCarthy, D. S., R. Sommer, and P. L. G. Vlek. 2009. Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crops Research 5063: 1-11.
36- Makowski, D., C. Naud, M. H. Jeffroy, A. Barbttin, and H. Monod. 2006. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliability Engineering and System Safety 91: 1142-1147.
37- Mohammadi, S. A., B. M. Prasanna, N. N. Singh. 2003. Sequential Path Model for Determining Interrelationships among Grain Yield and Related Characters in Maize. Crop Science 43: 1690-1697.
38- Paliwal, R. L. 2000. Introduction to maize and its importance. In: FAO, 2000. Tropical maize improvement and production. Rome, Italy.
39- Roman-Paoli, E., S. M. Welch, and R. L. Vanderlip. 2000. Comparing genetic coefficient estimation methods using the CERES-Maize model. Agricultural Systems 65: 29-41.
40- SAS Institute, 2001. SAS System, eighth ed. SAS Inst, Cary, NC.
41- Sinclair T., R. D. M. Bennetto, and R. O. Muchow. 1990. Relative sensitivity of grain yield and biomass accumulation to drought in field grown maize. Crop Science 30: 690-693.
42- Slafer, G. A., D. P. Calderini, and D. J. Mirrales. 2000. Yield components and compensation in wheat: Opportunities for further increasing. Proceedings of a workshop held in Cuidad Obregon, Sonora, Mexico, Pp. 101-133.
43- Sofi, P. A. and A. G. Rather. 2007. Studies on genetic variability, correlation and path analysis in maize (Zea mays L.). Maize Genetics Cooperation Newsletter 81: 26-27.
44- Soltani, A., and S. Galeshi. 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Research 77: 17-30.
45- Soltani, A., M.J. Robertson, Y. Mohammad-Nejad, and A. Rahemi-Karizaki. 2006a. Modeling chickpea growth and development: leaf production and senescence. Field Crops Research 99: 14-23.
46- Srivas, S. K., and U. P. Singh. 2004. Genetic variability, character association and path analysis of yield and its component traits in forage maize (Zea mays L.). Range management and Agroforestry 25: 149-153.
47- Thomison, P. R., and D. M. Jordan. 1995. Plant population effects in corn hybrids differing in ear growth habitat and prolificacy. Journal of Production Agriculture 8: 394-400.
48- Wali, M. C., P. M. Salimath, M. Prashanth, and S. I. Harlapur. 2006. Studies on character association as influenced by yield, starch and oil in maize (Zea mays L.). Karnataka Journal of Agricultural Research 19: 932-935.
49- Wallach, D., S. Buis, P. Lecharpentier, J. Bourges, P. Clastre, M. Launay, J. E. Bergez, M. Guerif, J. Soudais, and E. Justes. 2011. A package of parameter estimation methods and implementation for the STICS crop-soil model. Environmental Modelling and Software 26: 386-394.
50- Yin, X., and H. H. Van Laar. 2005. Crop Systems Dynamics: An ecophysiological model of genotype-by-environment interactions (GECROS). Wageningen Academic Publishers, Wageningen, 168 pp.
CAPTCHA Image