بررسی اثرات کودهای زیستی حاوی باکتری‌های تثبیت‌کننده غیرهمزیست نیتروژن و حل‌کننده فسفات بر روی صفات کمی و کیفی گندم (Triticum aestivum)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 دانشگاه آزاد اسلامی واحد علوم و تحقیقات

3 مرکز تحقیقات کشاورزی و منابع طبیعی مازندران

چکیده

حفظ محیط زیست و دستیابی به توسعه فراگیر از اهداف مهم کشاورزی پایدار محسوب می‌شود بنابراین روشی که بتواند از مصرف بیش از حد کودهای شیمیایی بکاهد ضروری به‌نظر می‌رسد. هدف این پژوهش ارزیابی تأثیر ریز جانداران محرک رشد گیاه و اثر سیستم‌های تغذیه تلفیقی- شیمیایی و باکتریایی بر عملکرد، اجزای عملکرد و درصد پروتئین دانه گندم لاین N8019 بود. آزمایش طی سال زراعی 91-1390 در مزرعه پژوهشی ایستگاه تحقیقات زراعی بایع کلا وابسته به مرکز تحقیقات کشاورزی و منابع طبیعی مازندران اجرا شد. این بررسی در قالب طرح بلوک‌های کامل تصادفی و به‌صورت کرت‌های خرد شده با 12 تیمار و در سه تکرار اجرا شد. تیمارها شامل کود شیمیایی (نیتروژن و فسفر) به‌عنوان عامل اصلی در سه سطح: 1- بدون مصرف (C0) 2– برابر 50% توصیه کودی (C1) 3- معادل 100% توصیه کودی (C2) و دو نوع کود بیولوژیک هرکدام حاوی ریزجانداران حل‌کننده فسفات و تثبیت‌کننده نیتروژن به‌عنوان عامل فرعی در چهار سطح 1- بدون تلقیح (B0) 2- بذور تلقیح شده با باکتری‌های تثبیت‌کننده نیتروژن (B1) 3- بذور تلقیح شده با باکتری‌های حل‌کننده فسفات (B2) 4- مصرف توأم کودهای زیستی (B3). نتایج حاصل از تجزیه واریانس آزمایش نشان داد که اثر تیمارهای مختلف شامل مصرف 100درصد کود شیمیایی و کودهای بیولوژیک بر عملکرد و میزان پروتئین دانه در سطح احتمال یک درصد معنی‌دار بود. اما بیشترین تأثیر بر روی اجزای یادشده در تیمار ترکیبی (100درصد کود شیمیایی+کودهای بیولوژیک) و اثرات متقابل آنها با میزان عملکرد 5506 کیلوگرم در هکتار حاصل شد که این افزایش عملکرد حاصل افزایش اجزای عملکرد نظیر تعداد سنبله در هر بوته، تعداد دانه در هر سنبله و وزن هزاردانه بود. بنابراین خصوصیات کمی و کیفی گندم در سیستم تلفیقی (کود زیستی و شیمیایی) نسبت به زمانی‌که به تنهایی استفاده می‌شود نتیجه بهتری داشته است.

کلیدواژه‌ها


1. Agata, W. 1990. Mechanism of high yielding an achievement in Chinese F1 rice compared with cultivated rice varieties. Japan Journal of Crop Science and Biotechnology 59: 270-273.
2. Amano, T., Zhu, Q., Wan, Y., Inou, N., and Tanake, H. 1993. Case studies on high yields of paddy rice in Jiangsu Province, China. I. Characteristic of grain production. Japan Journal of Crop Science and Biotechnology 62: 267-274.
3. Asadi Rahmani, H., Khavazy, K., Asgharzadeh, A., Rajalee, F., and Afshari, M. 2010. Biofertilizersin Iran. Opportunities and Challenges. First Challenges Congress fertilizer in Iran. Half a century of fertilizer consumption (Key Articles).
4. Banik, S., and Dey, B. K., 1982. Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69: 353-364.
5. Cohen, E., Okon, Y., Kigel, J., Nur, I., and Henis, Y. 1980. Increase in dry weight and total nitrogen content in Zea mays and Serariaitalica associated with nitrogenfixing Azospirillum. Plant Physiology 66: 746-749.
6. Dasilva, P., and Stutte, C. 1981. Nitrogen loss in conjunction with translocation from leaves as influenced by growth stage, leaf position and N supply. Journal of Agronomy and Crop Science 73: 38-42.
7. Engel, A. J., Bird, A., Hil, J. E., Horwath, W. R., and Kessel, C. V. 2001. Nitrogen dynamics and fertilizer use efficiency in rice following straw in corporation and winter flooding. Journal of Agronomy and Crop Science 93: 1346-1354.
8. Falah Nosratabad, A., and Khavazy, K. 2001. Role of phosphate solubilizing bacteria in agriculture. Necessity in the industrial production of biological fertilizers (Total articles). Publication Agricultural Education commissioned by the Institute of Soil and Water.
9. Gastal, F., and Nelson, C. J. 1994. Nitrogen use within the growing leaf blade of tall fescue. Plant Physiology 105-119.
10. Ghalavand, A., Shirvani, A., Dehganshoar, M., Malakoti, M., Asgharzadeh, A., and Chokan, D. 2009. Application of biofertilizers (Biological), Strategy for ecologically sustainable management of agricultural ecosystems, Iranian agronomy and Breeding Sciences Ninth congress (Key Articles). p. 200-224.
11. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Canadian Journal of Microbioly 41: 109-117.
12. Hirel, B., Gouis, J., Ney, B., and Gallais, A. 2007. The Challenger of improving nitrogen use efficiency in crop plants: towards a more central role of genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 58: 2369-2387.
13. Hirose, T., and Bazzaz, F. A. 1995. Trade off between lightand nitrogen use efficiency in canopy photosynthesis. Ann. Bot 82: 195-202.
14. Jones, D. L. 1998. Organic acids in the rhizospherea critical review. Plant Soil 205: 25-44.
15. Jones, D. G., and Lewis, D. M. 1993. Rhizobium inoculation of crops plants. In: Exploitation of micro-organisms. Jones, D. G. (Eds.). Chapman and Hall, London. 112: 197-224.
16. Kapulnik, Y., Sarige, S., Nur, I., and Henis, Y. 1981. Effect of Azospirillum Inculation on some growth parameters and N content of wheat, sorghum and panicum. Plant Soil 61: 65-77.
17. Khosravi, H. 1997. Study of frequency of and release of azotobacter chroococcum In gricultural soils of Tehran province and Some physiological characteristics of the research, MSc thesis, Faculty of agriculture, University of Tehran.
18. Klopper, H. J. W., Lifshitz, R., and Zablotowicx, R. M. 1989. Freeliving bacterial inoculators enhancing crop productivity. Trends in Biotechnology 7: 39-44.
19. Leinhos, V., and Nacek, O. 1994. Biosynthesis of auxins by PSMs from Wheat and Rye. Microbiol. Res. 149: 31-35.
20. Mac Adam, J. W., Volenec, J. J., and Nelson, C. J. 1989. Effects of nitrogen on mesophyll cell division and epidermal cell elongation intall fescue leaf blades. Plant Physiology 89: 549-556.
21. Malakoti, M. j., Khademi, Z., and Golchin, Z. 2009. Ways to increase wheat protein and actions to improve the quality while buying bread. Balanced nutrition of wheat (Key Articles) Second edition. p 39-46.
22. Molla, M. A. Z., and Chodhury, A. A. 1984. Microbial mineralization, of organic phosphate in soil, Plant Soil 78 (3): 393-399.
23. Mousavi, S. H. 2010. an analysis of self sufficiency in wheat production. PhD thesis, Agricultural Economics, Shiraz University.
24. Noor Mohammad, G., Syadat, A., and Kashani, A. 2010. The first volume of cereal crops. Shahid Chamran University Publications. p. 25-33.
25. Patriquin, D. G., and Dobereiner, J. 1978. Light microscopy observation of tetrazolium reducing in the endorhizosphere of maize and other grasses in Brazil. Canadian Journal of Microbioly 24: 734-742.
26. Rai, R. 1988. High temperature adapted A. brasilense strain: growth and interaction response on associative nitrogen fixation, mineral uptake and yield of cheem (Panicum miliaceum L.) genotypes in calcareous soil. J. Agric. Sci. 110: 321-329.
27. Rai, S. N., and Gaur, A. C. 1988. A characterization of Azotobacter spp, and effect of Azotobacterization in presence of fertilizer nitrogen in the yield of wheat. Indian Soc. Soi. Sci. 33: 424-426.
28. Sadrzadeh, S. M. 2004. Research of nitrogen and potassium Fertilizer on yield and yield components and index of rice growing Khazar varieties. MSc thesis Agronomy, College of Agricultural Sciences University of Guilan.
29. Sarige, S., Blum, A., and Okon, Y. 1992. Improvement of the water status and yield of fieldgrown grain sorghum by inoculation with Azospirillum brasillense. J. Agric. Sci. 110: 271-277.
30. Schnier, H. F., Dingkuhu, M., Dedatta, S., Mengel, K., and Faronilo, J. 1990. Nitrogen fertilization of direct seeded flooded transplanted rice: Nitrogen uptake, photosynthesis, growth and yield. Crop Science 30:1276-1284.
31. Shimon, M., Trosh, H., and Glick. B. R. 2004. Plant growth promoting bacteria confer resistance tomato plant to salt stress. Plant Physiol. Biochem. 42: 565-572.
32. Sinclair, T. R. 1998. Historical changes in harvest index crop Sci: 38: 638-643.
33. Singh, S., and Kapoor, K. K. 1998. Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscula rmycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils. 95: 373-397.
34. Taha, S. M., Mahmoud, S. A. Z., Halim, A., Damaty. E. L., and Abd Elhafez, A. M. 1969. Activity of phosphate dissolving bacteria in Egyptian soils. Plant and Soil 113: 149-159.
35. Tilak, K. V. B., Singh, C. S., Roy, V. K., and Rao, N. S. S. 1982. Azosprillum brasilense and azotobacter chroococcum inoculum: effect of maize and sorghum. Soil Biol. Biochem.14: 417-418.
36. Yang, J., Zhang, J., Wang, Z., Liu, L., and Zhu, Q. 2003. Post anthesis water deficits enhance grain filling in tow line hybrid rice. Crop Science 43: 2099-2108.
37. Zahir, A. Z., Arshad, M., and Franend berger, W. F. 2004. Plant growth promoting rhizobacteria: application and perspectives in agriculture. Adv. Agron, 81: 97-168.
CAPTCHA Image