بررسی تغییرات در روند طولانی‌مدت تولید گندم و عوامل مؤثر بر آن در استان خراسان شمالی: عملکرد گندم آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانش‌آموخته دکترای اگرواکولوژی، گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

به‌منظور تعیین عوامل محیطی و مدیریتی بر عملکرد گندم آبی در نواحی مختلف استان خراسان شمالی، روند تغییرات عملکرد در بازه زمانی 2017-1980 مورد بررسی قرار گرفت. سپس مراحل رشدی و عملکرد گیاه گندم توسط مدل DSSAT، با استفاده از مجموعه داده‌های گرید‌بندی‌شده AgMERRA شبیه‌سازی شد و اثر تغییرات دما و بارندگی بر عملکرد به‌وسیله آنالیز پنل دیتا مورد تجزیه‌وتحلیل قرار گرفت. طبق نتایج این تحقیق، 63 درصد از تغییرات عملکرد گندم آبی توسط عوامل محیطی (دما و بارندگی) و 37 درصد آن توسط عوامل مدیریتی توضیح داده می‌شوند. دماهای بالاتر از 30 درجه سانتی‌گراد، دمای میانگین، برهمکنش میزان و دفعات بارندگی در طول فصل رشد، اثر معنی‌داری بر عملکرد داشتند. طول فصل رشد در تمام مناطق موردمطالعه شیب کاهشی داشت. مطالعه مراحل حساس رشدی طی سال‌های خوب و ضعیف (به‌ترتیب دارای عملکرد بالا و پایین دانه گندم) حاکی از این است که در تمام سال‌های ضعیف، دماهای حداقل، پایین‌تر از حد بحرانی (11- درجه سانتی‌گراد) بودند. در تمامی نواحی و در تمام سال‌های موردمطالعه، گندم در مرحله پر شدن دانه (خمیری نرم و خمیری سخت) با دمای بالاتر از 30 درجه سانتی‌گراد مواجه بود، بنابراین هر اندازه که تاریخ کاشت از مهر ماه (تاریخ کاشت رایج در مناطق موردمطالعه) به تعویق افتد، کاهش شدید عملکرد را در پی خواهد داشت. به‌طورکلی، نتایج این تحقیق نشان داد که با به‌کار بستن شیوه‌های مدیریتی مؤثر، به‌ویژه انتخاب تاریخ کاشت مناسب می‌توان در جهت بهبود عملکرد گندم اقدام نمود.

کلیدواژه‌ها

موضوعات


Open Access

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Amjath-Babu, T. S., Krupnik, T. J., Aravindakshan, S., Arshad, M., & Kaechele, H. (2016). Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: Implications for policy. Ecological Indicators, 67, 830-838. https://doi.org/10.1016/j.ecolind.2016.03.030
  2. Andarzian, B., Bakhshandeh, A. M., Bannayan, M., Eman, Y., Fathia, G., & Alami Saeed, K. (2008). WheatPot: a simple model for spring wheat yield potential using monthly weather data. Biosystem Engineering, 99, 487-495. https://doi.org/10.1016/j.biosystemseng.2007.12.008
  3. Arshad, M., & Krupnik, T. S. A. T. J. (2016). Climate variability and yield risk in South Asia’s rice-wheat systems: emerging evidence from Pakistan. https://doi.org/10.1007/s10333-016-0544-0
  4. Arun, G., & Ghimire, K. (2019). Estimating post-harvest loss at the farm level to enhance Food Security: A Case of Nepal. International Journal of Agriculture, Environment and Food Sciences, 3(September), 127-136. https://doi.org/10.31015/jaefs.2019.3.3
  5. Asseng, S., Foster, I., & Turner, N. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997-1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
  6. Bannayan, M., & Eyshi Rezaei, E. (2012). Future production of rainfed wheat in Iran (Khorasan province): Climate change scenario analysis. Mitigation and Adaptation Strategies for Global Change, 211-227. https://doi.org/10.1007/s11027-012-9435-x
  7. Bannayan, M., Kobayashi, K., Marashi, H., & Hoogenboom, G. (2007). Gene-based modeling for rice: an opportunity to enhance the simulation of rice growth and development? Journal of Theoretical Biology, 249, 593-605. https://doi.org/10.1016/j.jtbi.2007.08.022
  8. Bannayan, M., Pooya Nasab, K., Ghorbani, R., & Yaghoobi, F. (2018). Temporal and Spatial Variation of Wheat and Beans Yield, Case Study: Khorasan Razavi. Iranian Journal of Field Crops Research 16(2), 263-282. (in Persian). https://doi.org/10.22067/gsc.v16i2.44536
  9. Bannayan, M., Sanjani, S., & Alizadeh, A. (2010). Association between climate indices aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118, 105-114. https://doi.org/10.1016/j.fcr.2010.04.011
  10. Batjes Niels, H. (2012). ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid. January 2012. Retrieved from http://www.isric.org/sites/default/files/isric_report_2012_01.pdf
  11. Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., & Koster, R. D. (2015). Technical Report Series on Global Modeling and Data Assimilation, Volume 43 MERRA-2: Initial Evaluation of the Climate. Technical Report Series on Global Modeling and Data Assimilation, 43(November).
  12. Boskabadi, E., Kohansal, M. R., & Ghorbani, M. (2022). How does climate change affect the wheat production in Mashhad? In proceeding of: The 8th Iranian Agricultural Economics Society (IAES). Retrieved from https://profdoc.um.ac.ir/articles/a/1027955.pdf
  13. Calderini, D. F., & Slafer, G. (1998). Changes in yield and yield stability in wheat during the 20th century. Field Crops Research, 57, 335-347. https://doi.org/10.1016/s0378-4290(98)00080-x
  14. Cao, H., Wang, Z., He, G., Dai, J., Huang, M., Wang, S., & Malhi, S. S. (2017). Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Research, 209, 88-95. https://doi.org/10.1016/j.fcr.2017.04.014
  15. Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 5952-5959. https://doi.org/10.1073/pnas.96.11.5952
  16. Curtis, T., & Halford, N. G. (2014). Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Annals of Applied Biology, 164(3), 354-372. https://doi.org/1111/aab.12108
  17. Eyshi Rezaei, E., & Lashkari, A. (2019). The consequences of change in management practices on maize yield under climate warming in Iran. Theoretical and Applied Climatology, 137, 1001-1013. https://doi.org/10.1007/s00704-018-2637-8
  18. Fallah, M. H., Nezami, A., Khazaie, H. R., & Nassiri Mahallati, M. (2021). Evaluation of DSSAT-Nwheat Model across a Wide Range of Climate Conditions in Iran. Journal of Agroecology, 12(4), 561-580. https://doi.org/10.22067/jag.v12i4.77250
  19. Farhadi, M., Jahan, M., & Bannayan, M. (2021). Investigation of validity and the possibility of using AgMERRA networked dataset in North Khorasan province. Iranian Journal of Field Crops Research, 19(2), 201-217. (in Persian). https://doi.org/10.22067/jcesc.2021.69532.1044
  20. Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah Bavani, A., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environment, 442(November), 405-419. https://doi.org/10.1016/j.scitotenv.2012.10.029
  21. Hoogenboom, G., Jones, J. W., Wilkens, R. W., Batcheloro, W. D., Hunt, L. A., Boot, K. J., Singh, U., Uryasev, O., Bowen, W. T., Gijsman, A. J., du Toit, A., White, J. W., & Tsuji, G. Y. (2010). Decision support system for Agro-technology Transfer Version 4.5 [CD- ROM]. University of Hawaii, Honolulu, HI.
  22. Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters 11(3). https://doi.org/10.1088/1748-9326/11/3/034003
  23. Jahan, M., & Nassiri Mahallati, M. (2022). Modeling the Response of Sesame (Sesamum indicum) Growth and Development to Climate Change under Deficit Irrigation in a Semi-arid Region. PLOS Climate, 1(6), e0000003. https://doi.org/10.1371/journal.pclm.0000003
  24. Koocheki, A., & Nassiri Mahallati, M. (2016). Climate Change Effects on Agricultural Production of Iran: II. Predicting Productivity of Field Crops and Adaptation Strategies. Iranian Journal of Field Crops Research, 14(1), 1-20. (in Persian). https://doi.org/10.22067/gsc.v14i1.51157
  25. Lashkari, A., Bannayan, M., Koochaki, A., Choi, Y. S., & Park, S. K. (2016). Applicability of AgMERRA forcing dataset forgap-filling of in-situ meteorological observation, Case Study: Mashhad Plain. Journal of Water and Soil 29(6), 1749-1758.
  26. Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 1443-1452. https://doi.org/10.1016/j.agrformet.2010.07.008
  27. Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters 2(1), 7. https://doi.org/10.1088/1748-9326/2/1/014002
  28. Nassiri Mahallati, M., & Jahan, M. (2020). Using the AquaCrop model to simulate sesame performance in response to superabsorbent polymer and humic acid application under limited irrigation conditions. International Journal of Biometeorology, 64(12), 2105-2117. https://doi.org/10.1007/s00484-020-02001-z
  29. Nelson, G. C., Rosegrant, M. W., Koo, J., & Robertson, R. (2009). Climate Change Impact on Agriculture and Costs of Adaptation. Title. Washington, DC: Int. Food Policy Res. Inst. http://doi.org/2499/0896295354
  30. Poole, N. (2005). Cereal Growth Stages Guide (Issue 2). Retrieved from https://grdc.com.au/__data/assets/pdf_file/0031/364594/Cereal-growth-stages.pdf%0Ahttps://grdc.com.au/uploads/documents/GRDC Cereal Growth Stages Guide1.pdf VN - readcube.com
  31. Ram, S., & Govindan, V. (2020). Improving Wheat Nutritional Quality through Biofortification. In: Igrejas G., Ikeda T., Guzmán C. (eds) Wheat Quality For Improving Processing And Human Health. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-34163-3_9
  32. Ray, D. K., Gerber, J. S., Macdonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1-9. https://doi.org/10.1038/ncomms6989
  33. Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., & Wolf, J. (2018). Climate change impact on global potato production. European Journal of Agronomy 100(November 2016), 87-98. https://doi.org/10.1016/j.eja.2017.11.008
  34. Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233-248. https://doi.org/10.1016/j.agrformet.2014.09.016
  35. Sanjani, S., Bannayan, M., & Kamyabnejad, M. (2011). Detection of recent climate change using daily ­temperature extremes in Khorasan Province, Iran. Climate Research 49(3), 247-254. https://doi.org/10.3354/cr01031
  36. Shifteh somee, B., Ezani, A., & Tabari, H. (2012). Spatiotemporal trends and change point of precipitation in Iran. Atmospheric Research, 113, 1-12. https://doi.org/10.1016/j.atmosres.2012.04.016
  37. Soler, C. M. T., Sentelhas, P.C., & Hoogenboom, G. (2007). Application of the CSM-CERES-Maize model for sowing date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27, 165-177. https://doi.org/10.1016/j.eja.2007.03.002
  38. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. (2007). Climate Change 2007: governmental Panel on Climate Change The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1256/wea.58.04
  39. Valizadeh, J., Ziaei, S. M., & Mazloumzadeh, S. M. (2014). Assessing climate change impacts on wheat production (a case study). Journal of the Saudi Society of Agricultural Science 13(2), 107-115. https://doi.org/10.1016/j.jssas.2013.02.002
  40. Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A., & Cassman, K. G. (2015). Creating long-term weather data from thin air for crop simulation modeling. Agricultural and Forest Meteorology, 209-210, 49-58. https://doi.org/10.1016/j.agrformet.2015.02.020
  41. Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research, 90 (C5), 8995. https://doi.org/10.1029/jc090ic05p08995
  42. Yaghoubi, F., Bannayan, M., & Asadi, G. A. (2020). Performance of predicted evapotranspiration and yield of rainfed wheat in the northeast Iran using gridded AgMERRA weather data. International Journal of Biometeorology, 64, 1519-1537. https://doi.org/10.1007/s00484-020-01931-y
  43. Yan, F., Sun, Y., Hui, X., Jiang, M., Xiang, K., Wu, Y., & Jun, M. (2019). The effect of straw mulch on nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy and Water Environment, 17, 23-33. https://doi.org/10.1007/s10333-018-0680-9
CAPTCHA Image