بررسی خصوصیات زراعی و فیزیولوژیک سورگوم علوفه‌ای (.Sorghum bicolor L) تحت تأثیر تنش کم‌آبی و کود سیلیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری، گروه زراعت، گروه کشاورزی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

2 گروه زراعت، گروه کشاورزی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

چکیده

به‌منظور ارزیابی کود سیلیس بر عملکرد کمی و کیفی سورگوم علوفه‌ای (Sorghum bicolor L.) در شرایط تنش کم‌آبی، آزمایشی به‌صورت کرت‌های یک‌بار خردشده در قالب طرح بلوک‌های تصادفی در سال 1397 در شهرستان ورامین اجرا گردید. تیمارهای مورد بررسی شامل آبیاری تا حد ظرفیت زراعی (آبیاری مطلوب) و آبیاری در 60 و 45 درصد ظرفیت زراعی (به‌ترتیب کم‌آبیاری متوسط و کم‌آبیاری شدید) به‌عنوان عامل اصلی و کود سیلیس (سیلیکات پتاسیم در سه مرحله) به‌صورت عدم مصرف، محلول‌پاشی و کودآبیاری به‌عنوان عامل فرعی در نظر گرفته شدند. بر اساس نتایج به‌دست آمده بیشترین محتوی کلروفیل کل (73/1 mg g-1 FW)، محتوی نسبی آب برگ (08/88%) و هدایت روزنه‌ای (46/2 cm s-1) در تیمار آبیاری مطلوب و استفاده از کود سیلیس در آب آبیاری به‌دست آمد. بیشترین میزان پروتئین خام (41/11%) در تیمار کم‌آبی شدید برآورد گردید به‌طوری‌که نسبت به آبیاری مطلوب 39/1 درصد بیشتر بود. تنش کم‌آبی باعث افزایش اسید سیانیدریک اندام هوایی شد به‌نحوی‌که باعث افزایش 8/41 درصد محتوی اسید سیانیدریک نسبت به شرایط مطلوب آبیاری گردید. بیشترین عملکرد اندام هوایی خشک سورگوم در تیمار آبیاری مطلوب با میانگین 7/23 تن در هکتار به‌دست آمد که نسبت به تیمار تنش متوسط و شدید کم‌آبی، به‌ترتیب 20 و 54 درصد بیشتر بود. کود سیلیس (محلول‌پاشی سه در هزار، کود آبیاری 10 لیتر در هکتار) منجر به کاهش ماده خشک قابل هضم گردید ولی از طرف دیگر منجر به افزایش میزان پروتئین خام و همچنین کاهش ماده سمی اسید سیانیدریک در اندام هوایی شد و در این بین محلول‌پاشی کود سیلیس موثر تر از مصرف در آب آبیاری بود. بنابراین می‌توان پیشنهاد نمود که محلول‌پاشی کود سیلیس برای حفظ رشد و نمو گیاه سورگوم به‌ویژه در مناطق خشک و نیمه‌خشک مد نظر کشاورزان قرار گیرد.

کلیدواژه‌ها

موضوعات


Open Access

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ahmadi Najafabadi, M., Askari, H., & Soltani Najafabadi, M. (2015). Study of Hydrogen Cyanide Effects on Salt Stress Induction in Aeluropus littoralis. Genetic Engineering and Biosafety Journal, 4(1), 55-66.
  2. Ahmed, A. A., Hassan, M. S. M., & El Naim, A. M. (2016). Evaluation of some local sorghum genotypes in north Kordofan of Sudan semi-arid agro-ecological environment. International Journal of Agriculture and Forestry, 6(1), 54-57.
  3. Ahmed, I. M., & Rajab, M. N. (2017). Estimate of Genetic Parameters and Correlation Coefficient in Sudan Grass (Sorghum sudanense (Piper) Staff). Journal of Plant Production, 8(9), 935-938. https://doi.org/10.21608/jpp.2017.40915
  4. Ahmed, M., Qadeer, U., & Aslam, M. A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6(3), 594-607.
  5. Ali, E., Iqbal, A., Hussain, S., Shah, J. M., Said, F., & Imtiaz, M. (2019). Selection criteria to assess drought stress tolerance in wheat genotypes using physiological and biochemical parameters. Biosciences Biotechnology Research Asia, 16(4), 751-762. https://doi.org/10.13005/bbra/2791
  6. Amin, M., Ahmad, R., Ali, A., Hussain, I., Mahmood, R., Aslam, M., & Lee, D. J. (2018). Influence of silicon fertilization on maize performance under limited water supply. Silicon, 10(2), 177-183. https://doi.org/10.1007/s12633-015-9372-x
  7. Artyszak, A. (2018). Effect of silicon fertilization on crop yield quantity and quality-A literature review in Europe. Plants7(3), 54. https://doi.org/10.3390/plants7030054
  8. Asadpour, S., Madani, H., Nour Mohammadi, Gh., Majidi Heravan, I., & Heidari Sharif Abad, H. (2022). Improving maize yield with advancing planting time and nano-silicon foliar spray alone or combined with zinc. Silicon, 14, 201-209. https://doi.org/10.1007/s12633-020-00815-5
  9. Balakhnina, T. I., Matichenkov, V. V., Wlodarczyk, T., Borkowska, A., Nosalewicz, M., & Fomina, I. R. (2012). Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regulation, 67(1), 35-43. https://doi.org/10.1007/s10725-012-9658-6
  10. Behera, S. K., & Panda, R. K. (2009). Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region. Agriculture, Ecosystems and Environment, 130, 141-155. https://doi.org/10.1016/j.agee.2008.12.009
  11. Blaney, B. J., & Dodman, R. L. (2002). Production of zearalenone, deoxynivalenol, nivalenol, and acetylated derivatives by Australian isolates of Fusarium graminearum and F. pseudograminearum in relation to source and culturing conditions. Australian Journal of Agricultural Research, 53(12), 1317-1326. https://doi.org/10.1071/AR02041
  12. Eastin, J. D. (1980). Sorghum development and yield. In s. Yoshida (ed) symp. On potential productivity of field crops under different environments. Losbanos, Philippines. 22-26 sept.
  13. FAO (Food and Agriculture of United Nation). 2020. World food situation, FAO cereal supply and demand brief, 7 September, Retrieved from http://www.fao.org/worldfoodsituation/csdb/en/
  14. Ghanem, H. E., Aldesuquy, H. S. & Elshafii, H. A. (2019). Silicon Alleviates Alkalinity Stress of Sorghum (Sorghum Bicolor) Plants by Improving Plant Water Status, Pigments, Protein, Nucleic Acids and Carbohydrates Contents. AATPS, 2(2), 180027.
  15. Hadebe, S. T., Modi, A. T., & Mabhaudhi, T. (2017). Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub‐Saharan Africa. Journal of Agronomy and Crop Science, 203(3), 177-191. https://doi.org/10.1111/jac.12191
  16. Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in genetics, 29(4), 206-214. https://doi.org/10.1016/j.tig.2012.11.009
  17. He, Y., Oyaizu, H., & Suzuki, S. (2002). Indole-3-acetic acidproduction in Pseudomonas fluorescens HP72 and its association with suppression of creepingbentgrass brown patch. Current Microbiology, 47, 138-143. https://doi.org/10.1007/s00284-002-3968-2
  18. Helaly, M. N., El-Hoseiny, H., El-Sheery, N. I., Rastogi, A., & Kalaji, H. M. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry, 118, 31-44. https://doi.org/10.1016/j.plaphy.2017.05.021
  19. Hou, Sh., Zhu, J., Ding, M., & Guohua, L.V. (2008). Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in Wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Talanta, 76(4), 798-802. https://doi.org/10.1016/j.talanta.2008.04.041
  20. Jabereldar, A. A., El Naim, A. M., Abdalla, A. A., & Dagash, Y. M. (2017). Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor Moench) in semi-arid environment. International Journal of Agriculture and Forestry, (1), 1-6.
  21. Jafari, A., Connolly, V., Frolich, A., & Walsh, E. K. (2003). A note on estimation of quality in perennial ryegrass by near infrared spectroscopy. Irish Journal of Agriculture and Food Research, 42, 293-299.
  22. Kalteh, M., Alipour, Z. T., Ashraf, S., Marashi Aliabadi, M., & Falah Nosratabadi, A. (2018). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4(3), 251-259
  23. Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655-1665. https://doi.org/10.1093/aob/mct229
  24. Keshavarz Mirzamohammadi, H., Modarres-Sanavy, S. A. M., Sefidkon, F., Mokhtassi-Bidgoli, A., & Mirjalili, M. H. (2021a). Irrigation and fertilizer treatments affecting rosmarinic acid accumulation, total phenolic content, antioxidant potential and correlation between them in peppermint (Mentha piperita). Irrigation Science, 39, 671-683. https://doi.org/10.1007/s00271-021-00729-z
  25. Keshavarz Mirzamohammadi, H., Tohidi-Moghadam, H. R., & Hosseini, S. J. (2021b). Is there any relationship between agronomic traits, soil properties and essential oil profile of peppermint (Mentha piperita) treated by fertiliser treatments and irrigation regimes? Annual Applied Biology, 179(3), 331-344. https://doi.org/10.1111/aab.12707
  26. Keshavarz, H., & Khodabin, Gh. (2019). The role of uniconazole in improving physiological and biochemical attributes of bean (Phaseolus vulgaris) subjected to drought stress. Journal of Crop Science and Biotechnology, 22(2), 161-168. https://doi.org/10.1007/s12892-019-0050-0
  27. Lauriault, L., M.A. Marsalis and D.M. VanLeeuwen. 2012. Planting date affects rainfed sorghum forage yields in semiarid, subtropical environments. Forage and Grazinglands, 10(1): 27-35. https://doi.org/10.1094/FG-2012-0416-01-RS
  28. Levitt, J. (1980). Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses. Academic Press. https://doi.org/10.1016/B978-0-12-445501-6.50016-6
  29. Li, P., Song, A., Li, Z., Fan, F., & Liang, Y. (2012). Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa). Plant and Soil, 354(1-2), 407-419. https://doi.org/10.1007/s11104-011-1076-4
  30. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  31. Maghsoudi, K., Emam, Y., & Pessarakli, M. (2016). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39(7), 1001-1015. https://doi.org/10.1080/01904167.2015.1109108
  32. Martin, T. N., Nunes, U. R., Stecca, J. D. L., & Pahins, D. B. (2017). Foliar application of silicon on yield components of wheat crop. Revista Caatinga, 30(3), 578-585. https://doi.org/10.1590/1983-21252017v30n305rc
  33. Menezes, C. B., Saldanha, D. C., Santos, C. V., Andrade, L. C., Mingote Júlio, M. P., Portugal, A. F., & Tardin, F. D. (2015). Evaluation of grain yield in sorghum hybrids under water stress. Genetics and Molecular Research, 14(4), 12675-12683. https://doi.org/10.4238/2015.October.19.11
  34. Moussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed Maize (Zea mays). International Journal of Agriculture and Biology, 2, 293-297.
  35. Moussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed Maize (Zea mays ). International Journal of Agriculture and Biology, 2, 293-297.
  36. Neu, S., Schaller, J., & Dudel, E. G. (2017). Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum). Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/srep40829
  37. Rizal, G., Karki, S., Alcasid, M., Montecillo, F., Acebron, K., Larazo, N., Garcia, R., Slamet-Loedin, I. H., & Quick, W. P. (2014). Shortening the breeding cycle of sorghum, a model crop for research. Crop Science, 54(2), 520-529. https://doi.org/10.2135/cropsci2013.07.0471
  38. Ryu, H., & Cho, Y. G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58(3), 147-155. https://doi.org/10.1007/s12374-015-0103-z
  39. Sarnklong, C., Cone, J. W., Pellikaan, W., & Hendriks, W. H. (2010). Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian-Australasian Journal of Animal Sciences, 23(5), 680-692. https://doi.org/10.5713/ajas.2010.80619
  40. Sher, A., Ansar, M., Ijaz, M., & Sattar, A. (2016). Proximate analisis of forage sorghum cultivar with different doses of nitrogen and seed rate.Fields Crops Turkish Journal, 21, 276-285. https://doi.org/10.17557/tjfc.60032
  41. Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumissativa Plant Growth Regulation, 48(2), 127-135. https://doi.org/10.1007/s10725-005-5482-6
  42. Tahir, M. A., Rahmatullah, T., Aziz, M., Kanwal, A. S., & Maqsood, M. A. (2006). Beneficial effects of Silicon in wheat (Triticum aestivum) under salinity stress. Pakistan Journal of Botany, 38(5), 1715-1722.
  43. Tripathi, D. K., Singh, V. P., Kumar, D., & Chauhan, D. K. (2012). Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chemistry and Ecology, 28(3), 281-291. https://doi.org/10.1080/02757540.2011.644789
  44. Wang, Y., Chen, P., Sun, L., Li, Q., Dai, S., Sun, Y., Kai, W., Zhang, Y., Liang, B., & Len, P. (2015). Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regulation, 75, 455-464. https://doi.org/10.1007/s10725-014-0006-x
  45. Yin, L., Wang, S., Li, J., Tanaka, K., & Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 35(11), 3099-3107. https://doi.org/10.1007/s11738-013-1343-5
  46. Yin, L., Wang, S., Tanaka, K. Fujihara, S., Itai, A., Den, X., & Zhang, S. (2016). Silicon‐mediated changes in polyamines participate in silicon‐induced salt tolerance in Sorghum bicolorPlant, Cell and Environment, 39(2), 245-258. https://doi.org/10.1111/pce.12521
  47. Zegada-Lizarazu, W., & Iijima, M. (2005). Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Production Science, 8, 454-460. https://doi.org/10.1626/pps.8.454
CAPTCHA Image