اثر کاربرد باکتری‌های محرک رشد گیاه و محلول‌پاشی اسیدهای آمینه بر ویژگی‌های رشد، عملکرد و ارزش غذایی در برنج (Oryza sativa L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 مرکز تحقیقات گیاهان دارویی، واحد آیت‌اله آملی، دانشگاه آزاد اسلامی، آمل، ایران

چکیده

باکتری‌های محرک رشد گیاه و اسیدهای آمینه می‌توانند به‌عنوان یک رویکرد عملی و سازگار با محیط‌زیست جهت بهبود رشد و عملکرد گیاهان زراعی مورد استفاده قرار گیرند. به‌منظور بررسی اثرات کاربرد سویه‌های باکتری‌های محرک رشد گیاه و محلول‌پاشی اسیدهای آمینه بر رشد، عملکرد و محتوای عناصر غذایی دانه در برنج رقم هاشمی، آزمایشی به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه‌ای شالیزاری واقع در شهرستان آمل طی دو سال 1398 و 1399 اجرا شد. باکتری‌های محرک رشد گیاه در پنج سطح (شاهد بدون باکتری [B0Pantoea agglomerans strain O4 [B1Pseudomonas putida strain P13 + Pantoea agglomerans strain P5 [B2Pseudomonas koreensis strain S14 + Pseudomonas vancouverensis strain S19 [B3] و ترکیب سویه‌های مختلف [B4]) به‌عنوان عامل اصلی و محلول‌پاشی اسیدهای آمینه در چهار سطح (شاهد بدون محلول‌پاشی اسیدهای آمینه [A0]، محلول‌پاشی متیونین [A1]، لیزین [A2] و متیونین + لیزین [A3]) به‌عنوان عامل فرعی در نظر گرفته شدند. نتایج نشان داد که کاربرد تلفیقی سویه‌های باکتری مورد مطالعه (B4) منجر به افزایش معنی‌دار طول خوشه (24.22 سانتی‌متر)، تعداد دانه پر در خوشه (60.30 دانه پر)، وزن هزار دانه (28.52 گرم)، عملکرد دانه (5097.50 کیلوگرم در هکتار) و بهبود محتوای عناصر نیتروژن (1.61 درصد)، فسفر (7.04 درصد) و پتاسیم (1.53 درصد) در دانه برنج در مقایسه با تیمارهای کاربرد جداگانه سویه‌های باکتری و هم‌چنین تیمار شاهد (بدون باکتری) شد. محلول‌‎پاشی ترکیبی اسیدهای آمینه متیونین و لیزین منجر به تولید بیشترین مقدار وزن هزار دانه (26.90 گرم)، عملکرد دانه (4844.73 کیلوگرم در هکتار) و محتوای نیتروژن در دانه (1.040 درصد) گردید. با توجه به نتایج مطالعه حاضر، کاربرد ترکیبی سویه‌های باکتری (P. agglomerans strain O4+ P. putida strain P13 + P. agglomerans strain P5+ P. koreensis strain S14 + P. vancouverensis strain S19) و محلول‌پاشی توأم اسیدهای آمینه متیونین و لیزین می‌تواند نقش مهمی در بهبود رشد، عملکرد و جذب عناصر غذایی در دانه برنج رقم هاشمی داشته باشد.

کلیدواژه‌ها

موضوعات


Open Access

©2023 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abd El-Mageed, T. A., Abd El-Mageed, S. A., El-Saadony, M. T., Abdelaziz, S., & Abdou, N. M. (2022). Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice, 15(1), 16. https://doi.org/10.1186/s12284-022-00564-6
  2. Ahemad, M., & Kibret, M. (2013). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26, 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
  3. Armada, E., Roldan, A., & Azcon, R. (2014). Differential activity of autochthonous bacteria in controlling drought stress in native lavandula and salvia plants species under drought conditions in natural arid soil. Microbial Ecology, 67, 410-420. https://doi.org/10.1007/s00248-013-0326-9
  4. Asghari, J., Ehteshami, S. M. R., Rajabi Darvishan, Z., & Khavazi, K. (2014). Study of root inoculation with plant growth promoting bacteria (PGPB) and spraying with their metabolites on chlorophyll content, nutrients uptake and yield in rice (Hashemi cultivar). Journal of Soil Biology, 2(1), 21-31. https://doi.org/10.22092/sbj.2014.100088
  5. Babazadeh, S. H., Kavoosi, M., Esfandiari, M., Nahvi, M., & Allahgholipour, M. (2012). Effects of nitrogen rates and application method on yield and yield components of hybrid rice. Iranian Journal of Field Crops Research, 9(4), 728-734. (In Persian with English abstract). https://doi.org/10.22067/gsc.v9i4.13284
  6. Bakhshandeh, E., Pirdashti, H., Shahsavarpour Lendeh, K., Gilani, Z., Yaghoubi Khanghahi, M., & Crecchio, C. (2020). Effects of plant growth promoting microorganisms inoculums on mineral nutrition, growth and productivity of rice (Oryza sativa). Journal of Plant Nutrition, 43(11), 1643-1660. https://doi.org/10.1080/01904167.2020.1739297
  7. Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but dierentially modulate fruit quality of greenhouse tomato. HortScience, 52, 1214-1220. https://doi.org/10.21273/HORTSCI12200-17
  8. El-Awadi, M., El-Bassiony, A., Fawzy, Z., & El-Nemr, M. (2011). Response of snap bean (Phaseolus vulgaris) lants to nitrogen fertilizer and foliar application with methionine and tryptophan. Nature Science, 9(5), 87-94.
  9. El-Said, M. A. A., & Mahdy, A. Y. (2016). Response of two wheat cultivars to foliar application with amino acids under low levels of nitrogen fertilization. Middle East Journal of Agriculture Research, 5(4), 462-72.
  10. Fageria, N. K., Gheyi, H. R., & Carvalho, C. S. (2014). Yield, potassium uptake, and use efficiency in upland rice genotypes. II INOVAGRI International Meeting, 13-16 April, Fortaleza, Brazil. pp 4515-
  11. Fathi, A., Farnia, A., & Maleki, A. (2013). Effects of nitrogen and phosphorous biofertilizers on yield and yield components of corn AS71 in Dareh-shahr, Iran. Journal of Crop Ecophysiology, 7(1), 105-114. (In Persian with English abstract).
  12. Galili, G., & Amir, R. (2013). Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnology Journal, 11, 211-222. https://doi.org/10.1111/pbi.12025
  13. Garcia de Salamone, I. E., Funes, J. M., Di Salvo, L. P., Escobar-Ortega, J. S., D’Auria, F., Ferrando, L., & Fernandez-Scavino, A. (2012). Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on rhizosphere microbial communities and field crop production. Applied Soil Ecology, 61, 196-204. https://doi.org/10.1016/j.apsoil.2011.12.012
  14. Hou, W., Trankner, M., Lu, J., Yan, J., Huang, S., Ren, T., Cong, R., & Li, X. (2019). Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biology, 19(1), 302. https://doi.org/10.1186/s12870-019-1894-8
  15. Huang, M., Long, F. A. N., Jiang, L. G., Yang, S. Y., Zou, Y. B., & Uphoff, N. (2019). Continuous applications of biochar to rice: Effects on grain yield and yield attributes. Journal of Integrative Agriculture, 18(3), 563-570. https://doi.org/10.1016/S2095-3119(18)61993-8
  16. Jones, J. R., Wolf, J. B., & Mills, H. A. (1991). Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Micro and Macro Publishing Inc. Athens, Georgia.
  17. Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., & Samiyappan, R. (2010). Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa ) under field conditions. Applied Soil Ecology, 45, 71-77. https://doi.org/10.1016/j.apsoil.2010.02.003
  18. Kavoosi, M., & Yazdani, M. R. (2020). Effect of irrigation interval and nitrogen fertilizer rate on grain yield and yield components of rice (Oryza sativa) cv. Hashemi. Iranian Journal of Crop Sciences, 22(2), 168-182. (In Persian with English abstract). https://doi.org/10.29252/abj.22.2.168
  19. Khan, S., Yu, H., Li, Q., Gao, Y., Sallam, B. N., Wang, H., Liu, P., & Jiang, W. (2019). Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy, 9(5), 266. https://doi.org/10.3390/agronomy9050266
  20. Kheyri, N. (2017). Effect of the rate and application time of vermicompost on the yield and yield components of rice (Oryza sativa ‘cv. Tarom Hashemi’). Applied Research in Field Crops, 30(2), 91-110. (In Persian with English abstract). https://doi.org/10.22092/aj.2018.114711.1169
  21. Kochaki, A., Jahan, M., & Nassiri Mahallti, M. (2008). Effects of arbuscular mycorrhizafungi and free-living nitrogen-fixing bacteria on growth characteristic of corn (Zea mays L.) under organic and conventional cropping systems. 2nd conference of the international society of organic agriculture research (ISOFAR), June 2008, Modona, Italia.
  22. Lavakush, Yadav, J., Verma, J. P., Jaiswal, D. K., & Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62, 123-128. https://doi.org/10.1016/j.ecoleng.2013.10.013
  23. Malakouti, M. J., & Tehrani, M. M. (2005). Effects of micronutrient on the yield and quality of agricultural products: Micro-nutrient with macro-effects. Tarbiat Modares University Press. Tehran, Iran. 445 p. (In Persian with English abstract).
  24. Mo, B., & Lian, B. (2011). Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms. Chinese Journal of Geochemistry, 30, 187. https://org/10.1007/s11631-011-0500-z
  25. Nguyen, H. C., Hoefgen, R., & Hesse, H. (2012). Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. Journal of Experimental Botany, 63(16), 5991- https://doi.org/10.1093/jxb/ers253
  26. Niknejad, Y., Daneshian, J., Shirani Rad, A. H., Pirdashti, H., & Arzanesh, M. H. (2017). Evaluation the efficiency of growth promoting bacteria on yield and yield components of rice under deficit irrigation and reduced rates of nitrogen. Applied Field Crops Research, 29(3), 9-19. (In Persian with English abstract). https://doi.org/10.22092/aj.2016.112591
  27. Olivares, F. L., Busato, J. G., de Paula, A. M., da Silva Lima, L., Aguiar, O., & Canellas, L. P. (2017). Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4, 30. https://doi.org/10.1186/s40538-017-0112-x
  28. Rahmati Khorshidi, Y., Ardakani, M. R., Ramezanpour, M. R., Khavazi, K., & Zargari, K. (2011). Response of yield and yield components of rice (Oryza sativa ) to Pseudomonas flouresence and Azospirillum lipoferum under different nitrogen levels. American-Eurasian Journal of Agricultural and Environmental Sciences, 10(3), 387-395.
  29. Rezvan Beidokhti, S., Dashtban, A., Kafi, M., & Sanjani, S. (2009). Evaluating the effect of some Pesodomonas bacteria strains on wheat yield and its components at various levels of phosphorus fertilization. Journal of Agroecology, 1(1), 33-40. (In Persian with English abstract). https://doi.org/10.22067/jag.v1i1.2652
  30. Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655
  31. Sharma, A. K. (2003). Biofertilizers for sustainable agriculture. Agro- Bios Publisher, India. PP: 300.
  32. Shekari, G., & Javanmardi, J. (2017). Effects of foliar application pure amino acid and amino acid containing fertilizer on broccoli (Brassica oleracea var. italica) transplant. Advances in Crop Science and Technology, 5, 280. https://doi.org/10.4172/2329-8863.1000280
  33. Souza, R., Beneduzi, A., Ambrosini, A., Costa, P. B., Meyer, J., Vargas, L. K., Schoenfeld, R., & Passaglia, L. M. P. (2013). The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa) cropped in southern Brazilian fields. Plant and Soil, 366, 585-603. https://doi.org/10.1007/s11104-012-1430-1
  34. Teixeira, W. F., Fagan, E. B., Soares, L. H., Soares, J. N., Reichardt, K., & Neto, D. D. (2018). Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Frontiers in Plant Science, 9, 396. https://doi.org/10.3389/fpls.2018.00396
  35. Waling, I., Vark, W. V., Houba, V. J. G., & Vanderlee, J. J. (1989). Soil and Plant Analysis, A series of syllabi. Part 7. Plant Analysis Procedures. Wageningen Agriculture University, Netherland. 168p.
  36. Weiland, M., Mancuso, S., & Baluska, F. (2016). Signalling via glutamate and GLRs in Arabidopsis thaliana. Functional Plant Biology, 43, 1-25. https://doi.org/10.1071/FP15109
  37. Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effect of biofertilizer containing N fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125(1-2), 155-166. https://doi.org/10.1016/j.geoderma.2004.07.003
  38. Xia, L., Lam, S. K., Chen, D., Wang, J., Tang, Q., & Yan, X. (2017). Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 23(5), 1917-1925. https://doi.org/10.1111/gcb.13455
  39. Yang, Q. Q., Zhang, C. Q., Chan, M. L., Zhao, D. S., Chen, J. Z., Wang, Q., Li, Q. F., Yu, H. X., Gu, M. H., Sun, S. S., & Liu, Q. Q. (2016). Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. Journal of Experimental Botany, 67(14), 4285-42 https://doi.org/10.1093/jxb/erw209
  40. Yang, Q. Q., Suen, P. K., Zhang, C. Q., Mak, S., Gu, M. H., Liu, Q. Q., & Sun, S. S. M. (2017). Improved growth performance, food efficiency, and lysine availability in growing rats fed with lysine-biofortified rice. Scientific Reports, 7, 1389. https://doi.org/10.1038/s41598-017-01555-0
CAPTCHA Image