اثر محلول‌‍پاشی با اسید سالیسیلیک بر شاخص‌‏های فیزیولوژیکی و القای تحمل به گرمای انتهای فصل کینوا (Chenopodium quinoa L.) در شرایط آب و هوایی اهواز

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

این پژوهش به‌منظور ارزیابی برخی پاسخ‌های فیزیولوژیک ارقام کینوا به تاریخ کاشت و تاثیر محلول‌پاشی اسیدسالیسیلیک بر کاهش اثرات سوء تنش گرمای پایان فصل، در سال زراعی 1401-1400، به‌صورت کرت‌های دوبار خردشده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی، دانشگاه شهید چمران اهواز به اجرا درآمد. در این آزمایش سه عامل الف) تاریخ کاشت شامل 20 مهر، 20 آبان و 20 آذر به‌عنوان فاکتور اصلی و ب) محلول‌پاشی اسیدسالیسیلیک در سه سطح شامل عدم کاربرد، 1.5 میلی‌مولار و 3 میلی‌مولار به‌عنوان فاکتور فرعی و ج) ارقام کینوا شامل Titicaca، Giza، Q12 و Redcarin به‌عنوان فاکتور فرعی فرعی مورد بررسی قرار گرفتند. بیشترین شاخص سطح برگ و سرعت رشد محصول به تیمار عدم کاربرد اسید سالیسیلیک در رقم Giza در 20 مهر تعلق داشت. بیشترین میزان شاخص سبزینگی نیز در تیمار تاریخ کاشت 20 آذر در 1.5 میلی‌مولار اسیدسالیسیلیک در رقم Giza مشاهده شد. بر اساس نتایج، بیشترین میزان عملکرد بیولوژیک و دانه به‌عنوان مهم‌ترین اهداف از کشت گیاه کینوا به‌ترتیب در تیمار عدم کاربرد اسید سالیسیلیک در رقم Redcarin در تاریخ کاشت 20 آذر و کاربرد 3 میلی‌مولار اسیدسالیسیلیک در رقم Redcarin در 20 مهر به‌دست آمد. با توجه به نتایج به‌دست‌آمده به نظر می‌رسد می‌توان با استفاده از تیمار مصرف 3 میلی‌مولار اسید سالیسیلیک در رقم Redcarin در 20 مهر از اثرات مخرب تنش گرمای انتهای فصل رشد بر شاخص‌های فیزیولوژیک گیاه کینوا کاست و به عملکرد بالای دانه گیاه کینوا دست یافت.

کلیدواژه‌ها

موضوعات


©2024 The author(s). This is an open-access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abd Allah, M. M. SH., El-Bassiouny, H. M. S., Elewa, T. A. E., & El-Sebai, T. N. (2015). Effect of salicylic acid and benzoic acid on growth, yield and some biochemical aspects of quinoa plant grown in sandy soil. International Journal of Chemtech Research, 8(12), 216-225. ISSN: 0974-4290
  2. Abdelaal, M. M. M., & Mohamed, Y. F. Y. (2017). Effect of pinching and paclobutrazol on growth, flowering, anatomy and chemical compositions of potted geranium (Pelargonium zonal ) plant. International Journal of Plant and Soil Science, 17(6), 1-22. https://doi.org/10.9734/IJPSS/2017/34527
  3. Adir, N., Zer, H., Shochat, S., & Ohad, I. (2003). Photoinhibition–a historical perspective. Photosynthesis Research, 76(1), 343-370.
  4. Agarawal, S., Sairam, R. K., Srivasta, G. C., & Meena, R. C. (2005). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541-550. https://doi.org/10.1007/s10535-005-0048-z
  5. Asadi Nasab, N., Nabipour, M., Roshanfekr, H., & Rahnama Ghahfarokhi, A. (2019). Effect of foliar application of growth regulators on growth and induction of terminal heat tolerance in wheat (Triticum aestivum ). Iranian Journal of Field Crops Research, 17(3), 467-476. https://sid.ir/paper/383609/en
  6. Azimi, M. S., Sayfzadeh, J. S., & Zare, S. (2013). Evaluation of amino acid and salicylic acid application on yield and growth of wheat under water deficit. International Journal of Agriculture and Crop Science, 5(8), 816-819. ISSN 2227-670X
  7. Balochi, H. R. (2013). Effect of seed priming on germination and seedling growth in pumpkin seeds paper (Cucurbita pepo) under salt stress. Journal of Crop Production and Processing, 3, 169-179. (in Persian with English abstract)
  8. Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environment, 31, 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
  9. Barr, H. D., & Weatherley, P. E. (1962). A re -examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15, 413-428. https://doi.org/10.1071/BI9620413
  10. El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215-225.
  11. FAO. (2011). Quinoa; an acient crop to contribute to world food security. Regional Office for Latin America andthe Caribbean, 63 p.
  12. Fazelian, N., & Asrar, Z. (2011). Arsenic and salicylic acid interaction onthe growth and some other physiological parameters in Matricaria recutita. Journal of Plant Biology, 8, 1-11. https://dorl.net/dor/20.1001.1.20088264.1390.3.8.2.0
  13. Fischer, S., Wilckens, R., Jara, J., Aranda, M., Valdivia, W., Bustamante, L., Graf, F., & Obal, I. (2017). Protein and antioxidant composition of quinoa (Chenopodium quinoa) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products, 107, 558-564. https://doi.org/10.1016/j.indcrop.2017.04.035
  14. Gallagher, J. N., & Biscoe, P. V. (1987). A Physiological analysis of cereal yield. II. Dry matter. Agricultural Progress, 53, 51-70.
  15. Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., Huanca, R., Morales, B., Miranda, R., Cusicanqui, J., & Taboada, C. (2008). Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa ). European Journal of Agronomy, 28(3), 427-436. https://doi.org/10.1016/j.eja.2007.11.008
  16. Gharineh, M., Bakhshande, A., Andarzian, B., & Shirali, M. (2019). Effects of sowing dates and irrigation levels on morphological traits and yield of Quinoa (Chenopodium quinoa Willd) in Khuzestan. Iranian Journal of Field Crop Science, 50(3), 149-156. https://doi.org/10.22059/ijfcs.2018.209566.654135
  17. Ghassemi-Golezani, K., Zafarani-Moattar, P., Raey, Y., & Mohammadi, M. (2010). Response of Pinato bean cultivars to water deficit at reproductive stages. Journal of Food, Agriculture and Environment, 8, 801-804. http://www.isfae.org/scientificjournal.php
  18. Hall, A. E. (1992). Breeding for heat tolerance. Plant Breeding Reviews, 10, 129-168.
  19. Harper, J. P., & Balke, N. E. (1981). Characterization of the inhibition of K+ absorption in wheat roots by salicylic acid. Plant Physiology, 68, 1349-1353.
  20. Hong-Bo Shao, L., Ye Chu, C., Abdul Jaleel, P., Manivannan, R., Panneer Selvam, M., & Shao, A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Critical Reviews in Biotechnology, 29, 131-151. https://doi.org/10.1080/07388550902869792
  21. Hussain, S., Ali, A., Ibrahim, M., Saleem, M. F., & Bukhsh, A. (2012). Exogenous application of abscisic acid for drought tolerance in sunflower (Helianthus annus). Journal of Animal and Plant Sciences, 22(3), 806-826.
  22. Iqbal, M., Khan, R., & Khan, N. A. (2013). Salicylic acid and jasmonates: approaches in abiotic stress tolerance. Plant Biochemistry and Physiology, 1(4), 1000e113. https://doi.org/10.4172/2329-9029.1000e113
  23. Ismail, H., Maksimovic, J. D., Maksimovic, V., Shabala, L., Živanovic, B. D., Tian, Y., Jacobsen, S. E., & Shabala, S. (2016). Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Function of Plant Biology, 43, 75-86. https://doi.org/10.1071/fp15312
  24. Jahanbakhsh, S., Khajoei-Nejad, Gh. R., Moradi, R., & Naghizadeh, M. (2021). Effect of planting date and salicylic acid on some quantitative and qualitative traits of quinoa as affected by drought stress. Environmental stresses in crop sciences, 13(4), 1149-1167. (in Persian with English abstract). https://doi.org/10.22077/escs.2020.2313.1595
  25. Kaydan‚ D., & Yagmur, M. (2006). Effects of different salicylic acid doses and treatments on wheat (Triticum aestivum) and lentil (Lens culinaris Medik.) yield and yield components. Journal of Agronomy College of Ankara University, 12, 285-293.
  26. Koocheki, A., & Sarmadnia, G. (1999). Physiology of crop plants (Translation). University of Tehran Publications. (in Persian with English abstract).
  27. Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Kumar, N., Rai, G. K., Singh, M., & Rai, R.D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4), 83-91. https://doi.org/10.5897/IJPPB12.008
  28. Mir Mohammadi Meybodi, A., & Qara Yazi, B. (2012). Physiological and racial aspects of salinity stress in plants. First edition, Isfahan University of Technology, 274 pages.
  29. Moaveni, P., Ranji, Z., & Noormohammadi, Q. (2003). Investigating some physiological parameters of organic compounds to identify genotypes resistant and sensitive to salinity in sugar beet. Journal of Agricultural Sciences of Iran, 6(9), 84-98.
  30. Modarresi, M., Mohammadi, V., Zali, A., & Mardi, M. (2010). Response of wheat yield and yield related traits to high temperature. Cereal Research Communications, 38, 23-31. https://doi.org/1556/CRC.38.2010.1.3
  31. Moharekar, S. T., Lokhande, S. D., Hara, T., Tanaka, R., Tanaka, A., & Chavan, P. D. (2003). Effects of salicylic acid on chlorophyll and carotenoid contents on wheat and moong seedlings. Photosynthetica, 41, 315-317. https://doi.org/10.1023/B:PHOT.0000011970.62172.15
  32. Pask, A., Pieteagalla, J., Mullan, D., & Reynolds, M. (2012). Physiological breeding II: a field guide to wheat phenotyping. Iv, 132 pages.
  33. Pulvento, C., Riccardi, M., Lavini, A., D’Andria, R., Iafelice, G., & Marconi, E. (2010). Field trial evaluation of two Chenopodium quinoa genotypes grown under rain-fed conditions in a typical Mediterranean environment in south Italy: Quinoa in the Mediterranean. Journal of Agronomy and Crop Sciences, 196, 407-411. https://doi.org/10.1111/j.1439-037X.2010.00431.x
  34. Ritchie, S. W., Nguyen, H. T., & Haloday, A. S. (1990). Leaf water content and gas exchange parameters of two wheat genotype differing in drought resistance. Crop Science, 30, 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
  35. Sakhabudinova, A. R., Fakhutdinova, D. R., Bezukova, M. V., & Shakirova, F. M. (2003). Salicylic acid prevents damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, 23, 314-319.
  36. Salarpour Ghoraba, F., & Farahbakhsh, H. (2014). Effects of drought stress and salicylic acid on morphological and physiological traits of (Foeniculum vulgare). Agricultural crop management (Journal of Agriculture), 16(3), 765-778. (in Persian with English abstract). https://doi.org/10.22059/jci.2014.53276
  37. Sezen, S. M., Yazar, A., Tekin, S., & Yildiz, M. (2016). Use of drainage water for irrigation of quinoa in a Mediterranean environment. In Proceedings of 2nd World Irrigation Forum (WIF2), 6-8.
  38. Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164(3), 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6
  39. Sharifi, S., Shariatmadari, F., & Yaghobfar, A. (2011). Effects of inclusion of hull-less barley and enzyme supplementation of broiler diets on growth performance, nutrient digestion and dietary metabolisable energy content. Journal of Central European Agriculture, 13(1), 37-52. https://doi.org/10.5513/JCEA01/13.1.1035
  40. Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137-141.
  41. Srivastava, S., Srivastava, A. K., Singh, B., Suprasanna, P., & D’souza, S. F. (2013). The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Journal of Plant Biology, 1-6. https://doi.org/10.1007/s10535-012-0288-7
  42. Van der Werf, A. K. (2007). Plant functional types in: Modelling Inter-Plant competition in Natural and Agro-Ecosystems. Workshop Report. Department of Theoretical Production Ecology. Wageningen Agricultural University. 12 to 14 November 1997.
  43. Watson, D. J. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11(41), 41-76.
  44. Yang, A., Akhtar, S. S., Amjad, M., Iqbal, S., & Jacobsen, S. E. (2016). Growth and Physiological Responses of Quinoa to Drought and Temperature Stress. Journal of Agronomy and Crop Science, 202, 445-453. https://doi.org/10.1111/jac.12167
  45. Yazdanpanah, S., Baghizadeh, A., & Abbassi, F. (2011). The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research, 6(4), 798-807. ISSN: 1991-637X
  46. Zaki‚ R. N., & Radwan, T. E. (2011). Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. Journal of Applied Sciences Research, 7, 42-58. ISSN: 1819-544X
  47. Zhou, X., Mackeuzie, A., Madramootoo, C., & Smith, D. (1999). Effect of some injected plant growth regulators with or without sucrose on grain production, biomass and photosynthetic activity of field grown corn plants. Journal of Agronomy and Crop Science, 183, 103-10. https://doi.org/10.1046/j.1439-037x.1999.00331.x
CAPTCHA Image