ارزیابی تحمل به تنش خشکی دوره رشد زایشی در برخی از ژنوتیپ‌های گندم (.Triticum aestivum L) با استفاده از شاخص‌های تحمل و حساسیت به تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی گرگان

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی

چکیده

این بررسی به منظور تعیین حدود حساسیت و تحمل به تنش کمبود رطوبتی ژنوتیپ‌های گندم به شرایط آبیاری کامل و کمبود رطوبتی در دوره زایشی اجرا شد. تعداد هشت ژنوتیپ حاصل از برنامه به‌نژادی اقلیم سرد کشور که دارای تیپ رشد زمستانه در مقایسه با ارقام اروم، میهن و زارع به‌عنوان شاهد بر پایه طرح بلوک کامل تصادفی با سه تکرار طی دو سال زراعی 1395-1393 در دو شرایط آبیاری کامل و کمبود رطوبتی در دوره زایشی در ایستگاه تحقیقات کشاورزی طرق مشهد مورد مقایسه قرار گرفتند. در این تحقیق از 14 شاخص ارزیابی تنش به‌ترتیب شاخص حساسیت به تنش (SSI)، شاخص تحمل به تنش (STI)، شاخص تحمل (TOL)، شاخص بهره‌وری متوسط (MP)، شاخص میانگین هندسی بهره‌وری (GMP)، میانگین هارمونیک (HM)، شاخص تحمل به تنش تعدیل‌یافته (MSTI)، شاخص پایداری عملکرد (YSI)، شاخص عملکرد (YI)، شاخص خشکی (DI)، شاخص تحمل غیرزیستی، (ATI) شاخص درصد حساسیت به تنش (SSPI)، شاخص محصول در تنش و بدون تنش (SNPI) و درصد کاهش عملکرد (RE) استفاده گردید. در مجموع شاخص‌ها پنج شاخص میانگین هندسی بهره‌وری (GMP)، تحمل به تنش (STI)، میانگین بهره‌وری (MP)، میانگین هارمونیک (HM) و شاخص تحمل به تنش تعدیل‌یافته (MSTI) با احتمال 99 درصد بیشترین همبستگی را با عملکرد دانه در شرایط بدون تنش و تنش نشان دادند و به‌عنوان برترین شاخص‌های متحمل به خشکی در این بررسی مشخص شدند. ژنوتیپ هشت که بالاترین مقدار را در این پنج شاخص داشت به‌عنوان متحمل‌ترین ژنوتیپ در شرایط تنش شناسایی گردید. ارقام شاهد به لحاظ عملکرد و تحمل به تنش خشکی در قیاس با ژنوتیپ هشت جایگاه مناسبی نداشتند. در شرایط تنش خشکی ژنوتیپ هشت بیشترین عملکرد را با 5176 کیلوگرم در هکتار به خود اختصاص داده و در رتبه میانگین شاخص‌های این تحقیق رتبه اول را داشت. ژنوتیپ 9 نیز از لحاظ عملکرد دانه در شرایط تنش خشکی با 5079 کیلوگرم در هکتار و رتبه دوم در میانگین شاخص‌های این تحقیق به‌عنوان بهترین ژنوتیپ متحمل به خشکی بعد از ژنوتیپ 8 قرار گرفت.

کلیدواژه‌ها


1. Afiuni, D., and Marjovvi, A. R. 2009. Assessment of different bread wheat cultivars responses to irrigation water salinity. Journal of Crop Cultivation Improvement 11 (2): 1-9. (in Persian).
2. Al-Ajlouni, Z. I.; Al-Abdallat, A.; Al-Ghzawi, A.; Ayad, J.; Abu Elenein, J.; Al Quraan, N.; and Baenziger, P. S. 2016. Impact of pre-anthesis water deficit on yield and yield components in barley (Hordeum vulgare L.) plants grown under controlled conditions. Agronomy Journal 6: 33-44.
3. Bouslama, M., and Schapaugh, W. T. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Science 24: 933-937.
4. Choukan, R., Taherkhani, T., Ghannadha, M. R., and Khodarahmi, M. 2006. Evaluation of drought tolerance in grain maize inbred lines using drought tolerance indices. The Journal of Agricultural Science 8: 79-89.
5. Dastfal, M., Barati, V., Emam, Y., Haghighatnia, H., and Ramazanpour, M. 2011. Evaluation of grain yield and its components in wheat genotypes under terminal drought stress conditions in Darab region. Seed and Plant Production Journal 27 (2):195-217. (in Persian).
6. Dixit, P.; Telleria, R.; Al Khatib, A. N.; and Allouzi, S. F. 2018. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan Science of the Total Environment 610: 219-233.
7. Ehdaie, B., Alloush, G. A., and Waines, J. G. 2008. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crop Research 106: 34-43.
8. Farshadfar, E., and Sutka, J. 2002. Screening drought tolerance criteria in maize. Acta Agronomica Academiae Scientiarum Hungaricae, Budapest. 50: 411-419.
9. Farshadfar, E., Poursiahbidi, M. M., and Safavi, S. M. 2013. Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices. International Journal of Advanced Biological and Biomedical Research 2: 143-158.
10. Fernandez, G. C. J. 1992. Effective selection criteria for assessing stress tolerance. In: Kuo C.G. (ed), Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Public Tainan Taiwan. 257-270.
11. Fischer, R. A., and Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain responses, Australian Journal of Agriculture Research 29: 897-912.
12. Gautam, A.; Sai Prasad, S. V.; Jajoo, A.; Ambati, D. 2015. Canopy temperature as a selection parameter for grain yield and its components in durum wheat under terminal heat stress in late sown conditions. Agricultural Research 4: 238-244.
13. Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., and Borghi, B. 1997. Evaluation of field and laboratory of drought and heat stress in winter cereals. Canadian Journal of Plant Science 77: 523-531.
14. Khokhar, M. L., Teixeira da Silva, J. A., and Spiertz, H. 2012. Evaluation of barley genotypes for yielding ability and drought tolerance under irrigated and water-stressed conditions. American-Eurasian Journal of Agricultural and Environmental Research 12 (3): 287-292.
15. Lan, J. 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agri. Bor-occid Sinic. 7: 85-87.
16. Lucas, H. Wheat Initiative: An International Vision for Wheat Improvement.2013. Available online: www.wheatinitiative.org. (accessed on 31 March 2014).
17. Moayedi, A. A., Boyce, A. N., and Barakbah, S. S. 2010. The performance of durum and bread wheat genotypes associated with yield and yield component under different water deficit conditions. Australian Journal of Basic and Applied Sciences 4 (1): 106-113.
18. Moosavi, S. S., Yazdi Samadi, B., Naghavi, M. R., Zali, A. A., Dashti, H., and Pourshahbazi, A. 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 12: 165-178.
19. Naderi, A., Akbari Moghaddam, H. and Mahmoodi, K. 2013. Evaluation of bread wheat genotypes for terminal drought stress tolerance in south-warm regions of Iran. Seed and Plant Improvement Journal 29 (3): 601- 616. (in Persian).
20. Rosielle, A. A., and Hamblin, J. 1981. Theoretical aspects of selections for yield in stress and non-stress environments. Crop Science 21: 943-946.
21. Saeidi, M., Abdoli, M., Shafiei-Abnavi, M., Mohammadi, M., and Eskandari-Ghaleh, Z. 2016. Evaluation of genetic diversity of bread and durum wheat genotypes based on agronomy traits and some morphological traits in non-stress and terminal drought stress conditions. Cereal Research 5 (4): 353-369.
22. Saeidi, M., Moradi, F., Ahmadi, A., Spehri, R., Najafian, G., and Shabani, A. 2010. The effects of terminal water stress on physiological characteristics and sink- source relations in two bread wheat (Triticum aestivum L.) cultivars. Iranian Journal of Crop Sciences 12 (4): 392-408. (in Persian).
23. Sanjari Pireivatlou, A. G., Dehdar Masjedlou, B., and Aliyev, R. T. 2010. Evaluation of yield potential and stress adaptive trait in wheat genotypes under post anthesis drought stress conditions. African Journal of Agricultural Research 5 (20): 2829-2836.
24. Tadesse, W.; Solh, M.; Braun, H. J.; Oweis, T.; Baum, M. 2016 Approaches and Strategies for Sustainable Wheat Production: Tools and Guidelines; ICARDA: Beirut, Lebanon, ISBN 92-9127-490-9.
25. Takeda, S., and Matsuoka, M. 2008. Genetic approaches to crop improvement: responding to environmental and population change. Nature 9: 444-457.
26. Yarnia, M., Arabifard, N., Rahmizadeh Khoei, and Zandi, P. 2011.Evaluation of drought tolerance indices among some winter rapeseed cultivar. African Journal of Biotechnology 10: 10914-10922.
27. Zebarjadi, A. R., Tavakoli Shadpey, S., Etminan, A. R. and Mohammadi, R. 2013. Evaluation of drought stress tolerance in durum wheat genotypes using drought tolerance indices. Seed and Plant Improvement Journal 29 (1): 1-12. (in Persian).
CAPTCHA Image