##plugins.themes.bootstrap3.article.main##

وحید محصلی فرزاد فربود

چکیده

کمبود آهن در گياهان عمدتاً در خاك‌هاي آهکی و قليايی مشاهده می‌شود. با توجه به اين که شرايط شيميايي اين خاك‌ها علت اصلی بروز كلروزآهن می‌باشد و از طرفی به‌دليل گران بودن كودهاي آلی حاوی آهن لذا استفاده از تركيبات آلي طبيعي و غني شده از آهن مانند پودر خون نيز مي‌تواند در برطرف نمودن كلروز آهن موثر باشد. بنابراين هدف از پژوهش حاضر، بررسی توان پودر خون در تأمين آهن مورد نياز گياه بادرنجبویه بود. آزمايش فوق با سه سطح آهن (صفر، 5/2 و 5 ميلی‌گرم آهن در کيلوگرم خاک) از منبع سکسترين آهن و چهار سطح پودر خون (صفر، 75/0، 5/1 و 3 گرم پودر خون در کيلوگرم خاک) بر روی گياه دارويی بادرنجبويه (Melissa Officinalis L.) اجرا گرديد. پس از اتمام دوره رشد رويشی، وزن ماده خشک، غلظت آهن، کلروفيل a و b، کاروتنوئيدها و ميزان اسانس گياه اندازه‌گيری شد. نتايج نشان داد که کاربرد کود آهن و پودر خون سبب افزايش معنی‌داری در وزن خشک، غلظت آهن، کلروفيل، کاروتنوئيدها و عملکرد اسانس در گياه بادرنجبويه گرديد. حداکثر وزن خشک گياه 4/141 گرم در گلدان در شرايط مصرف کود آهن و پودر خون به‌ترتيب به ميزان 5/2 ميلی‌گرم و 5/1 گرم در کيلوگرم به‌دست آمد. مصرف پودر خون در سطوح اول، دوم و سوم آهن به‌ترتيب سبب 8/13، 8/6 و 7/11 درصد افزايش در غلظت آهن گياه شد. کاربرد آهن و پودر خون به‌ترتيب به ميزان 5 ميلی‌گرم و 3 گرم در کيلوگرم سبب افزايشی معادل 7/241 درصد در ميزان اسانس گياه نسبت به شاهد گرديد. همچنين مصرف همين ميزان آهن و پودر خون باعث توليد حداکثری عملکرد اسانس (5/308 درصد افزايش نسبت به شاهد) شد.

جزئیات مقاله

کلمات کلیدی

آهن, ترکيبات آلی, ميزان و عملکرد اسانس, وزن خشک

مراجع
1. Allison, L. E., and Moodie, C. D. 1965. Carbonate. P. 1379–1396. In C. A. Black et al. (ed.) Methods of soil analysis. Part 2, Monograph No. 9, American Society of Agronomy, Madison, WI.
2. Amuamuha, L., Pirzad, A., and Hadi, H. 2012. Effect of varying concentrations and time of Nanoiron foliar application on the yield and essential oil of Pot marigold. International Research Journal of Applied and Basic Sciences 3 (10): 2085-2090.
3. Arnon, A. N. 1967. Method of extraction of chlorophyll in plants. Agronomy Journal 23: 112-121.
4. Bagheri, A., Rahmani, A., and Abbaszadeh, B. 2013. The effect of iron chelate foliar application on damask rose. Journal of Biological Research 4 (4): 53-55.
5. Blakrishman, K., Rajendran, C., and Kulandaivelu, G. 2000. Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content and photosynthetic activity in tropical fruit crops. Photosynthetic Activity 38: 477-479.
6. Briat, J. F., Curie, C., and Gaymard, F. 2007. Iron utilization and metabolism in plants. Current Opinion in Plant Biology 10: 276-282.
7. Bouyoucos, C. J. 1962. Hydrometer method improved for making particle-size analysis of soils. Agronomy Journal 54: 464-465.
8. Chapman, H. D. 1965. Cation-exchange capacity. P. 891–903. In C. A. Black et al. (ed.) Methods of soil analysis. Part 2, American Society of Agronomy. Madison, WI.
9. Charles, D. J., and Simon, J. E. 1990. Comparison of extraction methods for rapid determination of essential oil content and composition of basil. Journal of the American Society for Horticultural Science 115 (3): 458-462.
10. De Carvalho, N. C., Correa-Angeloni, M. J., Leffa, D. D., Moreira, J., Nicolau, V., and De Aguiar Amaral, P. 2011. Evaluation of the genotoxic and antigenotoxic potential of Melissa officinal is in mice. Genetics and Molecular Biology 34 (2): 290-297.
11. Dubey, V. S., Bhalla, R., and Lithra, R. 2003. Sucrose mobilization in relation to essential oil biogenesis during palmarosa (Cymbopogon martini Roxb. Wats. var. motia) inflorescence development. Biological Sciences 28 (4): 479-487.
12. Evans, W. C. 1996. Pharmacognosy.14th Edition. Chapter 21. Volatile Oils and Resins. John Wiley, New York, 259-260 pp.
13. Jones, J. B. 1984. Plants. In: Williams, S. (ed.). Official Methods of Analysis of the Association of Official Analytical Chemists. pp.: 38-64. Arlington, Virginia, USA.
14. Havlin, J. L., Beaton, J. D., Tisdale, S. L., and Nelson, W. L. 2005. Soil fertility and fertilizer: An Introduction to Nutrient Management. Upper Saddle River, Newjersey, United States. pp. 515.
15. Kalbasi, M., and Shariatmadari, H. 1993. Blood powder, a source of iron for plants. Journal of Plant Nutrition 16: 2213-2223.
16. Knudsen, D., Peterson, G. A., and Part, P. F. 1982. Lithium, sodium and potassium, pp. 225-246. In A. L. Page et al. (ed.) Methods of soil analysis. Part II, 2nd ed., Monograph No. 9, American Society of Agronomy, Madision, Wisconsin.
17. Koenig, R., and Johnson, M. 1999. Selection and using organic fertilizers. Utah State University Extension. Department of Agriculture.
18. Lindsay, W. L., and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421-428.
19. Mohasseli, V., Khoshgoftarmanesh, A. H., and Shariatmadari, H. 2016. The effect of air pollution on leaf iron (Fe) concentration and activity of Fe-dependent antioxidant enzymes in Maple. Water, Air, & Soil Pollution 227 (12): 1-11.
20. Mortvedt, J. J. 1986. Iron sources and management practices for correcting iron cholrosis problem. Journal of Plant Nutrition 9: 967-974.
21. NahedKennedy, D. O., Little, W., Haskell, C., and Scholey, A. B. 2006. Anxiolytic effects of a combination of Melissa officinalis and Valeriana officinalis during laboratory induced stress. Phytotherapy Research 20: 96-102.
22. Olsen, S. R. C., Cole, V., Watanabe, F. S., and Dean, L. A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Cir. 939, U.S. Government, Printing Office, Washington, DC.
23. Omidbaigi, R. Production and Processing of medicinal plants (In Persian). Astan'eQods'eRazavi publication. Vol 3. Tehran-Iran. 2008, 397pp.
24. Peech, M. 1965. Hydrogen ion activity. P. 922-923. In C. A. Black et al. (ed.) Methods of soil analysis. Part 2, American Society of Agronomy, Madison, WI.
25. Pirzad, A., Toosi, P., and Darvishzadeh, R. 2013. Effect of iron and zinc soluble application on plant traits and essential oil content of anise. Journal of Agricultural Sciences of Iran 15 (1): 12-23. (in Persian).
26. Preetipande, M., Anwar, S. C., Yadov, V., and Patra, D. 2007. Optimal level of Iron and Zinc in relation to its influence on herb yield and protection of essential oil in menthol mint. Communications in Soil Science and Plant Analysis 38: 561-578.
27. Said-Al Ahl, H. A. H., and Abeer, A. M. 2010. Effect of zinc and / or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean Journal of Applied Sciences 3 (1): 97-111.
28. Solomon, S. 2004. Organic Gardener's Composting. Chapter 4. All About Materials. p: 49-66.
29. Tagliavini, M., Abadía, J., Rombola, A. D., Abadia, A., Tsipouridis, C., and Marangoni, B. 2000. Agronomic means of the control of iron deficiency chlorosis in deciduous fruit trees. Journal of Plant Nutrition 23: 2007-2022.
30. Tessarin, P., Yunta, F., Ingrosso, E., ConceiçaoBoliani, A., Covarrubias, J. A., and Rombola, A. D. 2013. Improvement of grapevine iron nutrition by a bovine blood-derived compound. ActaHorticulturae13: 984-992.
31. Walkley, A., and Black, T. A. 1934. An examination of the Degljareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
32. Yunta, F., Di Foggia, M., Bellido Diaz, V., Morales Calderon, M., Tassarin, P., and DomenicoRombola, A. 2013. Blood meal-based compound. Good choice as iron fertilizer for organic farming. Journal of Agricultural and Food Chemistry 61: 3995-4003.
33. Zehtab–Salmasi, S., Heidari, F., and Alyari, H. 2008. Effect of micronutrients and plant density on biomass and essential oil production of peppermint (Mentha piperita L.). Plant Sciences Research 1 (1): 24-28.
ارجاع به مقاله
محصلیو., & فربودف. (2019). بررسی امکان جايگزينی پودر خون به‌جای مصرف کود سکسترين آهن در گياه دارويی بادرنجبويه (Melissa Officinalis L.). پژوهشهای زراعی ایران, 17(3), 457-465. https://doi.org/10.22067/gsc.v17i3.74666
نوع مقاله
علمی پژوهشی