##plugins.themes.bootstrap3.article.main##

علی استادی عبدالله جوانمرد محمدرضا مرشدلو سارا ملاعلی عباسیان

چکیده

به‌منظور بررسی اثر کودهای مختلف بر ویژگی‌های کمی و کیفی نعناع فلفلی (Mentha piperita L.)، آزمایشی به‌صورت اسپلیت پلات در زمان بر پایه طرح بلوک‌ کامل تصادفی با هفت تیمار و سه تکرار و در دو چین در دانشکده کشاورزی دانشگاه مراغه در سال زراعی 1396 اجرا شد. عامل اصلی تیمارهای مختلف کودی شامل 100 درصد کود شیمیایی NPK، قارچ مایکوریزا (Glomus mosseae)، قارچ مایکوریزا+50 درصد کود شیمیایی، نانو کود (ماکرو+ میکرو)، 50 درصد نانو کود+50 درصد کود شیمیایی و نانو کود+ مایکوریزا و عدم مصرف کود (شاهد) و عامل فرعی زمان برداشت (چین اول و دوم) بودند. صفات مورد مطالعه شامل ارتفاع بوته، تعداد شاخه‌ی جانبی در بوته، شاخص کلروفیل، وزن خشک برگ، وزن خشک ساقه، وزن کل ماده خشک، درصد اسانس، عملکرد اسانس و صفات کیفی اسانس بودند. نتایج نشان دادند که صفات ارتفاع بوته، شاخص کلروفیل، وزن خشک برگ، وزن خشک ساقه، وزن کل ماده خشک و درصد اسانس تحت تأثیر معنی‌دار اثر متقابل نوع کود و چین در سطح احتمال یک درصد قرار گرفتند. علاوه بر این، اثر تیمارهای مختلف کوددهی و چین بر تعداد شاخه‌ی جانبی و عملکرد اسانس به‌ترتیب در سطح احتمال پنج و یک درصد معنی‌دار بودند. بیشترین عملکرد کل ماده خشک (6/382 گرم در مترمربع) به تیمار 100 درصد کود شیمیایی و بهدنبال آن در تیمارهای 50 درصد کود شیمیایی+ مایکوریزا و 50 درصد کود شیمیایی+ 50 درصد نانو کود در چین دوم به‌دست آمد. از سوی دیگر، بیشترین (1/6 گرم در مترمربع) و کمترین (9/2 گرم در متر مربع) عملکرد اسانس نیز به‌ترتیب در تیمارهای 50 درصد کود شیمیایی+ مایکوریزا و شاهد به‌دست آمد. تجزیه شیمیایی اسانس نشان داد که در تمامی تیمارها منتول، منتون، 1،8 سینئول، نئو ایزومنتول، نئو منتول، منتوفوران و پی-منس-یک-این-9- اُل جزء ترکیب‌های غالب اسانس بودند. بیشترین میزان منتول در تیمار نانو کود و در چین دوم به‌دست آمد. علاوه‌براین، در هر دو چین مونوترپن‌های هیدروکربنه جزء اصلی اسانس بودند. به‌طور کلی نتایج حاصل از این تحقیق نشان داد که کاربرد تلفیقی 50 درصد کود شیمیایی+ 50 درصد نانو کود و 50 درصد کود شیمیایی+ قارچ مایکوریزا می‌تواند در بهبود کمیت و کیفیت اسانس نعناع فلفلی و کاهش کودهای شیمیایی موثر باشد.

جزئیات مقاله

کلمات کلیدی

چین, کاربرد تلفیقی کود, کشاورزی پایدار, منتول, منتون

مراجع
1. Abdullahi, R., and Sheriff, H. 2013. Effect of arbuscular mycorrhizal fungi and chemical fertilizer on growth and shoot nutrients content of onion under field condition in Northern Sudan Savanna of Nigeria. Journal of Agriculture and Veterinary Science 3 (5): 85-90.
2. Adams, R. P. 2017. Identification of essential oil components by gas chromatography/mass spectrometry. Allured publishing corporation. (4): 1-804 : Allured Publishing Corporation Carol Stream, IL.
3. Amani Machiani, M., Javanmard, A., Morshedloo, M. R., and Maggi, F. 2018. Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). Journal of Cleaner Production 171: 529-537.
4. Amuamuha, L., Pirzad, A., and Hadi, H. 2012. Effect of varying concentrations and time of Nanoiron foliar application on the yield and essential oil of Pot marigold. International Research Journal of Applied and Basic Sciences 3 (10): 2085-2090.
5. Aslani, Z., Hassani, A., Rasooli, S. M., Sefidkon, F., and Barin, M. 2011. Effect of two fungi species of arbuscular mycorrhizal (Glomus mosseae and Glomus intraradices) on growth, chlorophyll contents and P concentration in Basil (Ocimum basilicum L.) under drought stress conditions. Iranian Journal of Medicinal and Aromatic Plants Research 27 (3): 471-486. (in Persian with English abstract).
6. Azizi, A., Yan, F., and Honermeier, B. 2009. Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Industrial Crops and Products 29 (2-3): 554-561.
7. Babaei, K., Seyed Sharifi, R., Pirzad, A., and Khalilzadeh, R. 2017. Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interactions 12 (1): 381-389.
8. Bahadori, F., Ashorabadi, E. S., Mirza, M., Matinizade, M., and Abdosi, V. 2013. Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. International Journal of Agronomy and Plant Production 4: 3384-3391.
9. Baranauskienė, R., Venskutonis, P. R., Viškelis, P., and Dambrauskienė, E. 2003. Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry 51 (26): 7751-7758.
10. Baum, C., El-Tohamy, W., and Gruda, N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scientia Horticulturae 187: 131-141.
11. Cabello, M., Irrazabal, G., Bucsinszky, A. M., Saparrat, M., and Schalamuk, S. 2005. Effect of an arbuscular mycorrhizal fungus, Glomus mosseae, and a rock‐phosphate‐solubilizing fungus, Penicillium thomii, on Mentha piperita growth in a soilless medium. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms 45 (3): 182-189.
12. Court, W. A., Roy, R. C., Pocs, R., More, A. F., and White, P. H. 1993. Optimum Nitrogen Fertilizer Rate for Peppermint (Mentha piperita L.) in Ontario, Canada. Journal of Essential Oil Research 5 (6): 663-666.
13. Elfeky, S. A., Mohammed, M. A., Khater, M. S., Osman, Y. A. and Elsherbini, E. 2013. Effect of magnetite Nano-Fertilizer on Growth and yield of Ocimum basilicum L. International Journal of Indigenous Medicinal Plants 46 (3): 1286-1293.
14. Francis, C. A., Bulter, F. C., and King, L. D. 2000. Crop growth and relative growth rates in (Matricaria chamomilla L.). Crop Science 88: 1207-1212.
15. Galván, G. A., Parádi, I., Burger, K., Baar, J., Kuyper, T. W., Scholten, O. E., and Kik, C. 2009. Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19 (5): 317-328.
16. Geneva, M. P., Stancheva, I. V., Boychinova, M. M., Mincheva, N. H., and Yonova, P. A. 2010. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food and Agriculture 90 (4): 696-702.
17. Giovannetti, M., and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84 (3): 489-500.
18. Gryndler, M., Hršelová, H., Sudová, R., Gryndlerová, H., Řezáčová, V., and Merhautová, V. 2005. Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15 (7): 483-488.
19. Gutiérrez‐Mañero, F. J., Ramos‐Solano, B., Probanza, A., Mehouachi, J., R Tadeo, F., and Talon, M. 2001. The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111 (2): 206-211.
20. Hagh Parast Tanha, M. 1992. Nutrition and Metabolism Plants. Islamic Azad University Publishing, Rasht.
21. Hassiotis, C. N., Ntana, F., Lazari, D. M., Poulios, S., and Vlachonasios, K. E. 2014. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Industrial Crops and Products 62: 359-366.
22. Hofmeyer, P. V., Seymour, R. S., and Kenefic, L. S. 2010. Production ecology of Thuja occidentalis. Canadian Journal of Forest Research 40 (6): 1155-1164.
23. Izadi, Z., Ahmadvand, G., Asna-Ashari, M., and Piri, K. 2010. The effect of nitrogen and plant density on some growth characteristics, yield and essential oil in peppermint (Mentha piperita L.). Iranian Journal of Field Crops Research 8 (5): 827-836. (in Persian with English abstract).
24. Kahiluoto, H., Ketoja, E., and Vestberg, M. 2009. Contribution of arbuscular mycorrhiza to soil quality in contrasting cropping systems. Agriculture, Ecosystems & Environment 134 (1-2): 36-45.
25. Kapoor, R., Anand, G., Gupta, P., and Mandal, S. 2017. Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochemistry Reviews 16 (4): 677-692.
26. Kapoor, R., Chaudhary, V., and Bhatnagar, A. 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17 (7): 581-587.
27. Kapoor, R., Giri, B., and Mukerji, K. G. 2004. Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology 93 (3): 307-311.
28. Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E., and Karagiannidou, C. 2011. Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia Horticulturae 129 (2): 329-334.
29. Khan, M., Mobin, M., Abbas, Z., and Alamri, S. 2018. Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia Anthropocene 5: 225-240.
30. Khater, M. S. 2015. Magnetite-Nanoparticles Effects on Growth and essential oil of Peppermint. Current Science International 4 (2): 140-144.
31. Koske, R., and Gemma, J. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92 (4): 486-488.
32. Liu, R., and Lal, R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131-139.
33. Mafakheri, S., Asghari, B., and Shaltooki, M. 2016. Effects of biological, chemical and nano-fertilizers on quantitative and qualitative characteristics of Lallemantia iberica (MB) Fischer & Meyer. Iranian Journal of Medicinal and Aromatic Plants Research 32 (4): 667-677.
34. Mandal, S., Upadhyay, S., Wajid, S., Ram, M., Jain, D. C., Singh, V. P., Abdin, M. K., and Kapoor, R. 2015. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25 (5): 345-357.
35. Marcum, D. B., and Hanson, B. R. 2006. Effect of irrigation and harvest timing on peppermint oil yield in California. Agricultural Water Management 82 (1): 118-128.
36. Masoumi Zavarian, A., Yousefi Rad, M., and Asghari, M. 2015. Effects of Mycorrhizal Fungi on Quantitative and Qualitative Characteristics of Anise Plant (Pimpinella anisum) under Salt Stress. Journal of Medicinal Plants 4 (56): 139-148.
37. McGonigle, T., Miller, M., Evans, D., Fairchild, G., and Swan, J. 1990. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytologist 115 (3): 495-501.
38. Mishra, P., Singh, A., Mishra, R. R., Ong, S., and Prasad, S. M. 2018. Application of Nanotechnology to Enhance the Nutrient Quality of Food Crops and Agricultural Production Nanomaterials in Plants, Algae, and Microorganisms (pp. 453-472): Elsevier.
39. Moghadam, E., Mahmoodi, S. M., Farrokhian, F. A., Ramazani, Z., and Eskandari, F. 2015. The effect of foliar application of iron chelate type on morphological traits and essential oil content of holy basil (Ocimum sanctum). Journal of Crops Improvement 17 (3): 595 -606.
40. Morshedloo, M. R., Craker, L. E., Salami, A., Nazeri, V., Sang, H., and Maggi, F. 2017. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiology and Biochemistry 111: 119-128.
41. Morshedloo, M. R., Maggi, F., Neko, H. T., and Aghdam, M. S. 2018. Sumac (Rhus coriaria L.) fruit: Essential oil variability in Iranian populations. Industrial Crops and Products 111: 1-7.
42. Mura, S., Seddaiu, G., Bacchini, F., Roggero, P. P., and Greppi, G. F. 2013. Advances of nanotechnology in agro-environmental studies. Italian Journal of Agronomy 8 (3): 127-140.
43. Ormeño, E., and Fernandez, C. 2012. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Current Bioactive Compounds 8 (1): 71-79.
44. Pavela, R., Žabka, M., Vrchotová, N., and Tříska, J. 2018. Effect of foliar nutrition on the essential oil yield of Thyme (Thymus vulgaris L.). Industrial Crops and Products 112: 762-765.
45. Peter, K. 2006. Handbook of herbs and spices. Woodhead Publishing.
46. Phillips, J. M., and Hayman, D. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55 (1): 158-161.
47. Poshtdar, A., Mashhadie, A., Moradi, F., Siadat, S., and Bakhshandeh, A. 2016. Effect of source and rate of nitrogen fertilizer on yield and water and nitrogen use efficiency of peppermint (Mentha piperita L.). Iranian Journal of Crop Sciences 18 (1): 14-31. (in Persian with English abstract).
48. Rahmani, N., Valadabadi, S. A., Daneshian, J., and Bigdeli, M. 2008. The effects of water deficit stress and nitrogen on oil yield of Calendula officinalis L. Iranian Journal of Medicinal and Aromatic Plants Research 24 (1): 103-108.
49. Razavi, S., Jahan, M., Mahallti, M., and Ghalibaf, K. 2017. Radiation absorption and use efficiency of common mallow (Malva sylvestris L.) affected by different sources of organic, biological and chemical fertilizers and intercropping with fenugreek (Trigonella foenum-graecum). Iranian Journal of Field Crops Research 15 (1): 136-149.
50. Shajari Aghhavani, M., Rezvani Moghaddam, P., Ghorbani, R., and Nasiri Mahallati, M. 2016. Effects of single and combined application of organic, biological and chemical fertilizers on quantitative and qualitative yield of coriander (Coriandrum sativum). Journal of Horticultural Science 29 (4): 486-500. (in Persian with English abstract).
51. Smith, S., and Read, D. 2008. Mycorrhizal Symbiosis 3rd edn Academic Press: San Diego. CA, USA, 787.
52. Smitha, G., Basak, B., Thondaiman, V., and Saha, A. 2019. Nutrient management through organics, bio-fertilizers and crop residues improves growth, yield and quality of sacred basil (Ocimum sanctum Linn). Industrial Crops and Products 128: 599-606.
53. Solanki, P., Bhargava, A., Chhipa, H., Jain, N., and Panwar, J. 2015. Nano-fertilizers and their smart delivery system Nanotechnologies in food and agriculture (pp. 81-101): Springer.
54. Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., and De Mastro, G. 2017. Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products 102: 144-153.
55. Telci, I., Kacar, O., Bayram, E., Arabacı, O., Demirtaş, İ., Yılmaz, G., Özcan, I., Sönmez, C., and Göksu, E. 2011. The effect of ecological conditions on yield and quality traits of selected peppermint (Mentha piperita L.) clones. Industrial Crops and Products 34 (1): 1193-1197.
56. Urcoviche, R. C., Gazim, Z. C., Dragunski, D. C., Barcellos, F. G., and Alberton, O. 2015. Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Industrial Crops and Products 67: 103-107.
57. Valentine, A., Osborne, B., and Mitchell, D. 2001. Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Scientia Horticulturae 88 (3): 177-189.
58. Varma, A., Prasad, R., and Tuteja, N. 2018. Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration. Springer.
59. Weisany, W., Sohrabi, Y., Siosemardeh, A., and Ghassemi-Golezani, K. 2017. Funneliformis mosseae fungi changed essential oil composition in Trigonella foenum graecum L., Coriandrum sativum L. and Nigella sativa L. Journal of Essential Oil Research 29 (3): 276-287.
60. Willmann, M., Gerlach, N., Buer, B., Polatajko, A., Nagy, R., Koebke, E., Jansa, J., Flisch, R., and Bucher, M. 2013. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science 4: 1-6.
61. Yousefzadeh, S., Modarres, S. S. A. M., Sefidkon, F., and Ghiasy, O. M. 2016. Effect of biofertilizer, azocompost and nitrogen on oil yield and essential oil content of Dracocephalum moldavica L. Iranian Journal of Horticultural Sciences 46 (4): 604-611.
62. Zehtab-Salmasi, S., Heidari, F., and Alyari, H. 2008. Effects of microelements and plant density on biomass and essential oil production of peppermint (Mentha piperita L.). Plant Science Research 1 (1): 24-26.
63. Zeinali, H., Hosseini, H., and Shirzadi, M. 2014. Effects of nitrogen fertilizer and harvest time on agronomy, essential oil and menthol of Mentha piperita L. Iranian Journal of Medicinal and Aromatic Plants Research 30 (3): 486-495.
64. Zheljazkov, V. D., Cerven, V., Cantrell, C. L., Ebelhar, W. M., and Horgan, T. 2009. Effect of nitrogen, location, and harvesting stage on peppermint productivity, oil content, and oil composition. American Society for Horticultural Science 44 (5): 1267-1270.
65. Zolfaghari, M., Nazeri, V., Sefidkon, F., and Rejali, F. 2013. Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iranian Journal of Plant Physiology 3 (2): 643-650.
ارجاع به مقاله
استادی ع., جوانمرد ع., مرشدلو م., & ملاعلی عباسیان س. (2019). ارزیابی صفات کمی و کیفی نعناع‌فلفلی (Mentha piperita L.) در چین‌های اول و دوم تحت تأثیر کاربرد تلفیقی کودهای شیمیایی، نانو و مایکوریزا. پژوهشهای زراعی ایران, 17(2), 327-345. https://doi.org/10.22067/gsc.v17i2.75005
نوع مقاله
علمی پژوهشی