The Effect of Soil Fertilizers on Yield and Growth Traits of Sorghum (Sorghum bicolor)

Document Type : Research Article

Authors

Ferdowsi University of Mashhad

Abstract

Introduction
Since the use of chemical fertilizers causes environmental pollution and ecological damage, so application of biological fertilizers and selection the effective and compatible species in an special area, could be beneficial for sustainability of agroecosystems there. Nowadays, attention to the interrelation of plant-organism tended to interrelations between plant-organism-organism. Such nutritional relations, have ecological importance and important application in agriculture. The aim of this experiment was to evaluate the effect of chemical, organic and bio fertilizers on sorghum performance.
Materials and Methods
A field experiment was conducted in a randomized complete block design with three replications. The experimental treatments include three kinds of biofertilizers and their integrations and vermicompost and chemical fertilizer as follow: 1- mycorhhiza arbuscular (G.mosseae) + vermicompost 2- mycorhhiza+ Nitroxine® (included bacteria Azospirillum sp. and Azotobacter sp.) 3- mycorhhiza arbuscular+ Rhizobium (Rhizobium sp.) 4-mycorhhiza arbuscular + Chemical fertilizer NPK 5- mycorhhiza arbuscular 6-control. Mycorhhiza and chemical fertilizer were mixed with soil at the depth of 30 cm before planting. Seeds were inoculated with bio fertilizers and dried at shadow. First irrigation applied immediately after planting. In order to improve seedling emergence second irrigation was performed after 4 days and other irrigation was applied at regular intervals of 10 days. Studied traits were: height and percentage of root colonization, specific root length, seed yield, number of seeds in panicle, thousands seeds weight. To determine the specific root length (root length in a certain volume of soil) at the end of the growing season, plants in each plot were sampled. Then the length of root of each sample was determined.
Results and Discussion
The results showed that although the treatments did not affect the height of stem significantly, but they had significant effects on characteristics of root length colonization, specific root length, leaf area index, crop yield, number of seeds per panicle and thousand grains weight .The results demonstrated that the highest percent of root length colonization (82), specific root length (51.82 m root in 25 cm3 soil), leaf area index (5.47), seed yield (425.62 g.m-2), number of seeds in panicle (635) were obtained in mycorhhiza with Nitroxine® treatment. The highest weight of thousands seeds (29.26 g) was gained in simultaneous use of mycrhhoriza and vermicampost. On the basis of our results, the integration of mycrhhoriza with Nitroxine® is suggested as the best fertilizer treatment for sorghum.
Conclusions
The results showed that the application of mycorrhiza with nitroxin had the greatest effect on growth characteristics and yield of sorghum. It seems that whenever there was a source of nitrogen beside the mycorrhiza, the performance of sorghum was higher. Undoubtedly, application of bio and organic fertilizers specially in poor soils, have positive effects on soil physical and nutritional characteristics. On the other hand according to economical, environmental and social aspects, they are benefits and could be appropriate alternative for chemical fertilizers in future.

Keywords


1. Alizadeh, A., Alizadeh, A., and Khast Khodei, A. 2009. Application of mycorrhiza and Azospirillum study aimed at optimizing the use of nitrogen and phosphorus in corn Sustainable Agriculture. The findings of modern agriculture Issue 1. (in Persian).
2. Allen, M. F. (ed). 1992. Mycorrhizal Functioning, an Integrative Plant - Fungal Process. Chapman & Hall Press. New York, 534 pp.
3. Antunes, P. M., Deaville, D., and Goss, M. J. 2005. Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza 16 (3): 167-173.
4. Berta, G., Fusconi. A., and Hooker, J. E. 2002. In: S. Gianinazzi, H. Schuepp, J. M. Barea and K. Haselwandter (Eds). Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. Mycorrhiza Technology in Agriculture, from Genes to Bioproducts. Basel, Switzerland, Birkhauser Verlag p. 71-85.
5. Cardoso, I., and Kuyper, M. T. W. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment 116: 72-84.
6. Copetta, A., Lingua. G., and Berta, G. 2006. Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16: 485-494.
7. Dash, M. C., and Petra, U. C. 1979. Wormcast production and nitrogen contribution to soil by a tropical earthworm population from a grassland site in Orissa India Revue d'ecologie et de biologie du sol, 16: 79–83.
8. Eaidizadeh, Kh., Mahdavi Dameghani, A., Sabahi, H., and Soofizadeh, S. 2011. The application of bio-fertilizers in combination with chemical fertilizer to grow corn (Zea mays L.) in the valley. Journal of Ecology Agriculture 2 (2): 293-301. (in Persian).
9. El-Mougy, N. S., and Abdel-Kader, M. 2007. Antifungal effect of powdered spices and their extracts on growth and activity of some fungi in relation to damping-off disease control. Journal of Plant Protection Research 47 (3): 267-278.
10. Ghost, B. C., and, Bhat, R. 1998. Environmental hazards of nitrogen loading in wetland rice fields. Environ. Pollut 102: 123-126.
11. Giovannetti, M., and Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.
12. Glenn, R. D., Mallesh, B. C., Kubra, B., and Bagyaraj, D. J. 1992. Influence of vermicompost application on the available macronutrients and selected microbial populations in a paddy field. Soil Biology and Biochemistry 24: 1317-1320.
13. Gliessman, S. R. 1998. Agroecology: Ecological Processes in Sustainable Agriculture. CRC Press, ISBN: 1-57504-043-3.
14. Gryndler, M. 2000. Interaction of arbuscular mycorrhizal fungi with other soil organisms. In: Arbuscular Mycorrhizas: Physiology and Function. Kapulnik Y., and. Douds, D.D. (Eds.). pp. 239-262. Kluwer Academic Publishers, Dordrecht, The Netherlands, ISBN 0-7923-6444-9.
15. Haghparast tanha, M. 1993. Terricolous and agricultural soils. Islamic Azad University Publications of Rasht, No 83-98. (in Persian).
16. Jahan, M. 2008. Agroecological aspects of coexistence corn mycorrhizal fungi and bacteria free-living nitrogen-fixing crops in conventional and ecological systems. PhD thesis of Agriculture (Ecology), Faculty of Agriculture. Mashhad Ferdowsi University. (in Persian).
17. Kader, M. A., Mian, M. H., and Hoque, M. S. 2002. Effects of Azotobacter inoculant on the yield and nitrogen uptake by wheat. Journal of Biological Sciences 2 (4): 259-261.
18. Kapoor, R., Chaudhary, V., and Bhatnagar, A. K. 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17: 581-587.
19. Kocheki, A., and Sarmadneya, Gh. H. 2010. Crop physiology. (Translation). Publications University of Mashhad. 400 p. (In Persian).
20. Kormanik, P. P., and McGraw, A. C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. Available Online at: http://md1.csa.com/partners/viewrecords.php?requester=gs&collection=ENV&recid=596492.
21. Lakzeyan, A. 2011. Microbial activity in the rhizosphere. (Translation). University of Mashhad, 380 p. (In Persian).
22. Marulanda, A., Barea, J. M., and Azcon, R. 2006. An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama spaerocarpa. FEMS Microbiology Ecology 52: 670-678.
23. Martin J. P., Black J. H., and Hawthorne, R. M. 1997. Influence of earthworm-processed pig manure on the growth and yield of green house tomatoes. Bioresource Technology 75: 175-180.
24. Medina, O. A., Kretschmer, A. E., and Sylvia, D. M. 1990. Growth response of field-grown Siratro (Macroptilium atropurpureum Urb.) and Aeschynomene americana L. to inoculation with selected vesicular-arbuscular mycorrhizal fungi. Biology and Fertility of Soils 9 (1): 54-60.
25. Mohammad, M. J., Malkawi, H. I., and Shibi, R. 2002. Effect of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soil with different levels of salts. Journal of Plant nutrition 26: 125-137.
26. Moradi, S., Basharati, H., Nadeyan, H., Karimi, A., and Golchin, A. 2010. The effects of humidity, mycorrhiza and Rhizobium on germination, flowering and morphological traits in pea. Soil Science Congress in Gorgan, 243-244. (in Persian).
27. Murty, M. G., and Ladha, J. K. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant and Soil 108: 281-285.
28. Nurmohammadi, Gh., Seyadat, A. A., and Kashani, A. 2010. The cultivation of crops. Chamran University Press, 446 p. (in Persian).
29. Panwar, J. D. S. 1991. Effect of VAM and Azospirillum brasilense on photosynthesis, nitrogen metabolism and grain yield in wheat. Indian Journal of Plant Physiology 34: 357-361.
30. Pacovsky, R. S. 1990. Development and growth effects in the sorghum-Azospirillum association. Journal of Applied Microbiology 68: 555-563.
31. Rajapakse, S., and Miller, C. 1992. Methods for studying vesicular-arbuscular mycorrhizal root colonization and related root physical properties. In: Methods in microbiology, Volume 24. Norris J. R., Read D. J. and Varma A. K. (Eds.). Academic Press Ltd., USA, pp. 302-316.
32. Shirani, A., Alizadeh, A., and Hashemi Dezfuli, A. 2001. Effect of arbuscular mycorrhizal fungi, phosphorus and drought stress on the efficiency of nutrient uptake in wheat. Publications Seed and Plant 16: 327-349. (in Persian).
33. Singh, S. P. 1997. Chickpea (Cicer arietinume L.). Field Crops Research 53: 161-170.
34. Subramanian, K. S., and Charest, C. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Myorrhiza 7 (1): 25-32.
35. Tennant, D. 1975. A test of a modified line intersect method of estimating root length. Journal of Ecology, 63: 995-1001.
36. Tilak, K. V. B. R., and Singh, C. S. 1988. Response of pearl millet (Pennisetum americanum) to inoculation with vesicular-arbuscular mycorrhizae and Azospirillum brasilense with different source of phosphorus. Current Science 57: 43-44.
37. Widada, J., Damarjaya D. I., and Kabirun S. 2007. In: Velazquez, E., and Rodriguez-Barrueco, C. (eds). The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. First International Meeting on Microbial Phosphate Solubilization. Springer, p. 173-177.
CAPTCHA Image
  • Receive Date: 21 April 2014
  • Revise Date: 25 October 2014
  • Accept Date: 09 December 2014
  • First Publish Date: 20 March 2016