تأثیر تراکم بوته بر روابط آلومتریک بین سطح برگ و صفات رویشی در گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

تراکم بوته از عوامل مدیریتی مهم بر روی عملکرد گیاهان زراعی می‌باشد. به‌منظور کمی‌سازی سطح برگ و صفات رویشی در گندم، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی گرگان طی سال زراعی
92-1391 با چهار تکرار اجرا شد. تیمارها شامل تراکم بوته (50، 100، 200، 350، 500، 650، 800 بذر در مترمربع) و دو رقم (کوهدشت و مروارید) بودند. فاصله ردیف های کاشت 20 سانتی‌متر در نظر گرفته شد. نتایج نشان داد که بین سطح برگ با سایر صفات رویشی روابط آلومتریک مناسبی تا مرحله تورم غلاف برگ پرچم وجود داشت به‌طوری‌که ضرایب تبیین بین سطح برگ بوته با تعداد برگ در ساقه اصلی، وزن خشک برگ سبز و ارتفاع بوته به‌ترتیب 0/87، 0/78 و 0/85 بود. همچنین در بررسی اثر تراکم بر روی روابط آلومتریک بین صفات نتایج نشان دادند که برای صفات سطح برگ در مقابل تعداد برگ در ساقه اصلی و ارتفاع بوته تراکم تأثیر معنی‌داری در سطح یک درصد وجود داشت و برای صفت سطح برگ بوته در مقابل وزن خشک برگ سبز اثر تراکم غیرمعنی‌دار بود. از روابط به‌دست آمده در این آزمایش می‌توان در مدل‌های شبیه‌سازی رشد و نمو گندم استفاده کرد.

کلیدواژه‌ها


1. Akram-Ghaderi, F., Soltani, A., and Rezaie, J. 2005. Estimation of leaf area using cotton varieties vegetative features. Journal of Agricultural Sciences and Natural Resources 11 (1): 15-23.
2. Arabamer, R. 2008. Predicting kernel number and biomass retrains location in wheat (Triticum aestivum L.). Thesis of MS.c, Gorgan University of Agricultural Sciences & Natural Resources. 89p. (in Persian).
3. Bakhshandeh, A. 2011. Assessment of allometric relations in wheat. MS.c Thesis Gorgan University of Agricultural Sciences & Natural Resources. 104 p.
4. Bakhshandeh, A., Soltani, A., Zeynali, E., Kalatearabi, M., and Ghadiriyan, R. 2011. Assessment of allometric relations of leaf and vegetative traits in bread wheat and durum. Iranian Journal of Crop Sciences 13 (4): 642-657.
5. Ghorbani, M. H., and Hartoniyan, V. H. 2011. Density and row spacing on the growth and yield of wheat in dryland. Electronic Journal of Crop Production 4 (2): 139-154 P.
6. Hammer, G. L., Carberry, P. S. and Muchow, R. C. 1993. Modeling genotype and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crops Research 33: 293-310.
7. Han, J. R. 1973. Visual qualification of wheat development. Agron. J. 65: 116-119.
8. Jorgensen, P. D., Brooking, I. R., Semenov, M. A., and Porter, J. P. 1988. Making sense of wheat development: a critique of methodology. Field Crops Research 55: 117-127.
9. Kanemasu, E., Hellman, J., Bagley, J., and Powers, W. 1977. Using Landsat data to estimate evapotranspiration of winter wheat. Environmental Management 1: 515-520.
10. Labafihosienabadi, M. R., Elahdadi, A., Najafi, F., Akbari, G. A., Khalaj, H. V., and Ghavami, N. 2012. Predict leaf paper skin pumpkin (Cucurbita pepo. L.) with allometric relationships. National conference on natural products and herbs. Bojnoord University of Medical Sciences. P 373.
11. Lieth, J. H., Reynolds, J. F., and Rogers, H. H. 1986. Estimation of leaf area of soybeans grown under elevated carbon dioxide levels. Field Crops Research 13: 193-203.
12. Midori, O., Yoichiro, K., and Junko, Y. 2012. Allometric relationship between the size and number of shoots as a determinant of adaptations in rice to water-saving aerobic culture. Field Crops Research 131: 17-25.
13. Nehbandani, A., Soltani, A., Zeinali, E., Raeisi, S., Najafi, R. 2013. Allometric relationships between leaf area and vegetative characteristics in soybean. International journal of agriculture and crop sciences 6 (16): 1127-1136.
14. Niklas, K. J. 1994. Plant allometry, the scaling of form and process. Chicago: University of Chicago press. 81: 339-344.
15. Payne, W. A., Went, C. W., Hossner, L. R., and Gates, C. E. 1991. Estimating pearl millet leaf area and specific leaf area. Agronomy Journal 83: 937-941.
16. Pengelly, B. C., Blamey, F. P. C., and Nuchow, R. C. 1999. Radiation interception and the accumulation of biomass and nitrogen by soybean and three tropical annual forage legumes. Field Crops Research 63: 99-112.
17. Rahemikarizaki, A., Soltani, A., Porreza, J., Zeynali, A., and Sarparast, R. 2006. Allometric relationship between leaf and vegetative parts of the plant. Journal of Agricultural Sciences and Natural Resources 13: 49-59.
18. Rahemi-karizaki, A. 2005. Predicting interception and use of solar radiation in chickpea. Thesis of MS.c. Gorgan University of Agricultural Sciences & Natural Resources. 89 p. (in Persian).
19. Sharrett, B. S., and Baker, D. G. 1985. Alfalfa leaf area as a function of dry matter. Crop Science 26: 1040-1042.
20. Soltani, A. 2009. Mathematical modeling in crop plants. Press SID Mashhad. P 175.
21. Soltani, A., Robertson, M. J., Mohammad Nejad, Y., and Rahemi-Karizaki, A. 2006. Modeling chickpea growth and development Leaf production and senescence. Field Crops Research 138: 14-23.
22. Tsialtas, J. T., and Maslaris, N. 2008. Leaf allometry and prediction of specific leaf area (SLA) in a suger beet (Beta vulgaris L.) cultivars. J. Photosynthetica. 46: 351-355.
23. Van Ittersum, M. K., and Donatelli, M. 2003. Modeling cropping systems highlights of the symposium and preface to the special issues. European Journal of Agronomy 18: 187-197.