حداکثر کارایی فتوسیستمII به‌عنوان شاخصی از خسارت یخ‌زدگی در اکوتیپ‌های چاودار (Secale montanum) چندساله

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

اندازه‌گیری فلورسانس کلروفیل روشی سریع و غیر تخریبی است که به‌عنوان شاخصی مهم برای شناسایی ارقام متحمل به تنش‌های محیطی ازجمله تنش یخ‌زدگی مورد استفاده قرار گرفته است. به‌منظور بررسی امکان استفاده از پارامترهای فلورسانس کلروفیل در ارزیابی تحمل اکوتیپ‌های چندساله چاودار به تنش یخ‌زدگی آزمایشی به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در دانشکده کشاورزی دانشگاه فردوسی مشهد اجرا شد. عامل‌های مورد مطالعه شامل 10 اکوتیپ چاودار (264، 941، 8425، 15771، 1587، 14947، 591، 1275، 3857 و 12640)، 9 دمای یخ‌زدگی (0، 3-، 6-، 9-، 12-، 15-، 18-، 21- و 24- درجه سانتی‌گراد) و چهار مرحله اندازه‌گیری حداکثر کارایی فتوسیستم II در دوره‌ی بازیابی گیاه پس از اعمال تنش یخ‌زدگی (12، 24، 48 و 96 ساعت) بودند. حداکثر کارایی فتوسیستم II در گیاهچه‌های چاودار مورد بررسی قرار گرفت. نتایج نشان داد که اکوتیپ‌های چاودار تا دمای 18- درجه سانتی‌گراد از نظر حداکثر کارایی فتوسیستم II تفاوت معنی‌داری نداشتند، اما در دماهای 21- و 24- درجه سانتی‌گراد و با گذشت زمان بازیابی از 12 به 24 ساعت حداکثر کارایی فتوسیستم II کاهش یافت. از نظر دمای کاهنده 50 درصد حداکثر کارایی فتوسیستم II بین اکوتیپ‌های چاودار تفاوت معنی‌داری وجود داشت، به‌طوری‌که در 12 ساعت بعد از اعمال تنش یخ‌زدگی اکوتیپ 12640 در دمای 8/24- درجه سانتی‌گراد به 50 درصد کاهش حداکثر کارایی فتوسیستم II خود رسید و اکوتیپ 264 و 941 نیز به‌ترتیب با 2/20- و20- درجه سانتی‌گراد بالاترین دمای کاهنده 50 درصد حداکثر کارایی فتوسیستم II را دارا بودند. بین حداکثر کارایی فتوسیستم II با درصد نشت الکترولیت‌ها و درصد بقا همبستگی معنی‌داری وجود داشت که نشان‌دهنده پتانسیل مناسب شاخص مذکور برای تشخیص سریع ارقام حساس و متحمل به تنش یخ‌زدگی در چاودار می‌باشد.

کلیدواژه‌ها


1. Behnia, M. 1994. Cold season cereals. Tehran University Pub.
2. Binder, W. D., and Fielder, P. 1996. Chlorophyll fluorescence as an indicator of frost hardiness in white spruce seedlings from different latitudes. New Forests 11 (3): 233-253.
3. Dai, F., Zhou, M., and Zhang, G. 2007. The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiology and Biochemistry 45 (12): 915-921.
4. Fowler, D. B., Breton, G., Limin, A. E., Mahfoozi, S., and Sarhan, F. 2001. Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Journal of Plant Physiology 127 (4): 1676-1681.
5. Francia, E., Rizza, F., Cattivelli, L., Stanca, A. M., Galiba, G., Toth, B., Hayes, P. M., Skinner, J. S., and Pecchioni, N. 2004. Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) בTremois’ (spring) barley map. Theoretical and Applied Genetics 108 (4): 670-680.
6. Graan, T., and Boyer, J. S. 1990. Very high CO2 partially restores photosynthesis in sunflower at low water potentials. Planta 181 (3): 378-384.
7. Hakam, N., De Ell, J. R., Khanizadeh, S., and Richer, C. 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. HortScience 35 (2): 184-186.
8. Ingram, J., and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Journal of Annual review of plant biology 47 (1): 377-403.
9. Jalilian, A., Mazaheri, D., Tavakol Afshari, R., Abdolahian, M., Rahimian, H., and Ahmai, M. 2008. Effect of freezing damage during seedling stage on diferent species of sugar beet. Journal of Crop science 4: 400-415.
10. Liang, Y., Chen, H., Tang, M. J., Yang, P. F., and Shen, S. H. 2007. Responses of Jatropha curcas seedlings to cold stress: photosynthesis‐related proteins and chlorophyll fluorescence characteristics. Physiologia Plantarum 131 (3): 508-517.
11. Mahfoozi, S., Hosein Salkadeh, G., Mardi, M., and Karimzadeh, G. 2008. 10th crop and plant breeding. Karaj. 100-108.
12. Mam, J., and Philip, R. 1996. Chlorophyll Fluorescence as a Parameter for Frost Hardiness in Winter Wheat. A Comparison with other Hardiness Parameters. Phyton. 36: 45-56.
13. Maxwell, K., and Johnson, G. N. 2000. Chlorophyll fluorescence_a practical guide. Journal of experimental botany 51 (345): 659-668.
14. Mena-Petite, A., Muñoz-Rueda, A., and Lacuesta, M. 2005. Effect of cold storage treatments and transplanting stress on gas exchange, chlorophyll fluorescence and survival under water limiting conditions of Pinus radiata stock-types. European Journal of Forest Research 124 (2): 73-82.
15. Neuner, G., and Buchner, O. 1999. Assessment of foliar frost damage: a comparison of in vivo chlorophyll fluorescence with other viability tests. Journal applicate Botany 73: 50-54.
16. Nezami, A., Borzouei, A., Jahani, M., Azizi, M., and Sharif, A. 2007. Elecrolite leakage as an index of freezing damage in Rapeseed. Journal of Crop Reseaches of Iran. 1: 167-175.
17. Nourmohamadi, Q., Siadat, S. A., and Kashani, A. 1998. Cereal cropping. Shahid Chamran University Pub.
18. Percival, G. C. and Henderson, A., 2003. An assessment of the freezing toleran ce of urban trees using chlorophyll fluorescence. The Journal of Horticultural Science and Biotechnology 78 (2): 254-260.
19. Rapacz, M. 2007. Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica 45 (3): 409-418.
20. Rapacz, M., Tyrka, M., Kaczmarek, W., Gut, M. Wolanin, B., and Mikulski, W. 2008. Photosynthetic acclimation to cold as a potential physiological marker of winter barley freezing tolerance assessed under variable winter environment. Journal of Agronomy and Crop Science 194 (1): 61-71.
21. Rizza, F., Pagani, D., Stanca, A. M., and Cattivelli, L. 2001. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breeding 120 (5): 389-396.