اثر محلول‌‌پاشی با دود-آب و سطوح نیتروژن بر ویژگی‌های بوم‌شناختی فیزیولوژیک گندم (Triticum aestivum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه رازی، کرمانشاه

چکیده

به منظور بررسی اثر کاربرد کود نیتروژن و محلول‌پاشی برگی دود-آب بر قابلیت جذب و کارایی مصرف تشعشع و برخی خصوصیات کانوپی گندم، آزمایشی به‌صورت کرت‌های خرد شده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار طی سال زراعی 1395-1394 در مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه رازی اجرا شد. تیمارهای آزمایش شامل سطوح مختلف کاربرد نیتروژن (90، 180، 300 و 360 کیلوگرم کود اوره در هکتار) به‌عنوان عامل اصلی و محلول‌پاشی برگی با عصاره دود-آب (در پنج سطح شامل شاهد و غلظت‌های 001/0، 01/0، 1/0 و 1 درصد) به‌عنوان عامل فرعی در نظر گرفته شد. صفات مورد ارزیابی شامل، شاخص سطح برگ، روند جذب تشعشع، وزن خشک کل، کارایی مصرف تشعشع، عملکرد دانه و شاخص برداشت گندم بود. نتایج نشان داد که در تمامی سطوح نیتروژن، محلول‌پاشی با دود-آب نسبت به شاهد (محلول‌پاشی با آب مقطر) موجب بهبود ویژگی‌های اندازه‌گیری شده گندم گردید. افزایش فراهمی نیتروژن و غلظت‌های بالای دود-آب با بهبود شاخص سطح برگ، جذب نور، کارایی مصرف نور و عملکرد وزن خشک کل موجب افزایش عملکرد دانه گندم شد، به‌طوری‌که بیشترین کارایی مصرف تشعشع (65/1 گرم بر مگاژول) در شرایط کاربرد 360 کیلوگرم کود اوره در هکتار و محلول‌پاشی با غلظت یک درصد دود-آب مشاهده گردید. همچنین بیشترین مقدار عملکرد دانه (922 گرم در متر مربع) در شرایط کاربرد 360 کیلوگرم اوره در هکتار و غلظت یک درصد دود-آب و کمترین مقدار آن (339 گرم در متر مربع) در شرایط کاربرد 90 کیلوگرم کود اوره در هکتار و محلول‌پاشی با آب مقطر به‌دست آمد. محلول‌پاشی با غلظت یک درصد دود- آب موجب افزایش 6/10 درصد عملکرد دانه در شرایط مصرف 360 کیلوگرم در هکتار کود نیتروژن نسبت به تیمار شاهد شد. به‌طور کلی نتایج نشان داد محلول‌پاشی با دود-آب مقداری از نیاز گندم به عنصر نیتروژن را تأمین کرد.

کلیدواژه‌ها


1. Abdelgadir, H. A., Kulkarni, M. J., Aremu, A. O., and Van Staden, J. 2013. Smok-water and karrikinolide (KAR1) foliar applications promote seedling growth and photosynthetic pigments of the biofuel seed crop Jatropha curcas L. Journal of Plant Nutrition and Soil Science 176: 743-747.
2. Agriculture statistics of Iran, 2017. http://amar.maj.ir.
3. Ahmadi, A., Ehsanzadeh, P., and Jabbary, F. 2007. Introduction to plant physiology. University of Tehran Press. Tehran.
4. Ameri, A., and Nasiri Mahalati, M. 2008. Effects of nitrogen application and plant densities on flower yield, essential oils, and radiation use efficiency of Marigold (Calendula officinalis L.). Pajouhesh and Sazandegi 88.133-144. (in Persian with English abstract).
5. Aremu, O., Plackova, L., Novak, O., Strik, W. A., Dolezal, K., and Van Staden, J. 2016. Cytokinin profiles in ex vitro acclimatized Eucomis autumnalis plants pre-treated with smoke-derived karrikinolide. Plant Cell Reports 35: 227-238.
6. Aslam, M. M., Jamil, M., Khatoon, A., El-Hendawy, S. E., Al-Suhaibani, N. A., Shakir, S. K., Malook, I., and Rehman, S. 2015. Does weeds-derived smoke improve plant growth of wheat? Journal of Bio-Molecular Sciences 3 (2): 86-96.
7. Banayan, M. 2002. Development and application of simulation models in agriculture. Ferdowsi University of Mashhah Press. Mashhad.
8. Blandino, M., Pilati, A., and Reyneri, A. 2009. Effect of foliar treatments to durum wheat on flag leaf senescence, grain yield, quality and deoxynivalenol contamination in North Italy, Field Crop Research 114: 214-222.
9. Chumpookam, J., Lin, H. L., Shiesh, C. C., and Ku, K. L. 2012. Effect of smoke-water on seed germination and resistance to Rhizoctonia solani inciting Papaya damping-off. Hoticulture NCHU 34 (1): 13-29.
10. Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., and Trengove, R. D. 2004. A compound from smoke that promotes seed germination. Science 305: 977-977.
11. Gardner, M. J., Dalling, K. J., Light, M. E., Jager, A. K., and Van Staden, J. 2001. Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellin metabolism? South African Journal of Botany 67: 636-640.
12. Gastal, F., and Lemaire, G. 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany 53: 789-799.
13. Goudriaan, J., and Van Laar, H. H. 1993. Modelling potential crop growth processes. Kluwer Academic Press.
14. Hassegawa, R. H., Fonseca, H., Fancelli, A. L., da Silva, V. N., Schammass, E. A., Reis, T. A., and Correa, B. 2008. Influence of macro-and micronutrient fertilization on fungal contamination and fumonisin production in corn grains. Food Control 19: 36-43.
15. Jaggard, K., and Clark, C. 2000. Growth of sugar beet crops in 1999. British Sugar Beet. A Review. Crop Science 68 (1): 6-11.
16. Jain, N., Stirk, W. A., and Van Staden, J. 2008. Cytokinin-and auxin-like activity of a butenolide isolated from plant-derived smoke. South African Journal of Botany 74: 327-331.
17. Jamil, M., Kanwal, M., Aslam, M. M., Kahn, S. U., Malook, I., Tu, J., and Rehman, S. U. 2014. Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Australian Journal of Crop Science 8 (2): 159-170.
18. Kahn, P., Rehman, S., Jamil, M., Irfan, S., Waheed, M. A., Aslam, M. M., Kanwal, M., and Shakir, S. K. 2014. Alleviation of Boron stress through plant derived smoke extracts in Sorghum bicolor. Journal of Stress Physiology and Biochemistry 10 (3): 153-165.
19. Karimian, M., Koocheki, A., and Nassiri Mahallati, M. 2009. Influence of nitrogen and plant density on light absorption and radiation use efficiency in two spring rapeseed cultivars. Iranian Journal of Field Crops Research 7 (1): 163-172. (in Persian with English abstract).
20. Kazemeini, S. A., Ghadiri, H., Karimian, N., Kamgar Haghighi, A. A., and Kheradmand, M. 2008. Interaction Effects of nitrogen and organic matters on growth and yield of dryland wheat (Triticum aestivum L.). Journal of Water and Soil Science 12 (45b): 461-472. (in Persian with English abstract).
21. Kemanian, A. R., Stockle, C. O., and Huggins, D. R. 2004. Variability of barley radiation use efficiency. Crop Science Society of America 44: 1662-1672.
22. Koocheki, A., Khorramdel, S., Fallahpour, F., and Melati, F. 2013. Evaluation of Radiation Absorbtion and Use Efficiency in Row Intercropping of Wheat (Triticum aestivum L.) and Canola (Brassica napus L.). Iranian Journal of Field Crops Research 11 (4): 533-542. (in Persian).
23. Kulkarni, M. G., Ascough, G. D., and Van Staden, J. 2007. Effects of foliar applications of smoke-water and a smoke-isolated butenolide on seedling growth of okra and tomato. Horticultural Science 42 (1): 179-182.
24. Kulkarni, M. G., Ascough, G. D., and Van Staden, J. 2008. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. Horticultural Technology 18 (3): 449-454.
25. Kulkarni, M. G., Light, M. E., and Van Staden, J. 2011. Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. South African Journal of Botany 77: 972- 979.
26. Kulkarni, M. G., Sparg, S. G., and Van Staden, J. 2007. Germination and postgermination response of Acacia seeds to smoke-water and butenolide, a smoke-derived compound. Journal of Arid Environments 69: 177-187.
27. Kulkarni, M. G., Sparg, S. G., Light, M. E. and Van Staden, J., 2006. Stimulation of rice (Oryza sativa L.) seedling vigour by smoke-water and butenolide. Journal of Agronomy and Crop Science 192: 395-398.
28. Lawlar, D. W. 1995. Photosynthesis, productivity and environment. Journal of Experimental Botany 46: 1449-1461.
29. Lemone, J. 2007. Nitrogen management for wheat protein and yield in the sperance port zone. Department of Agriculture and Food, Western Australia, Perth. Bulletin 4707. 30 pp.
30. Light, M. E., Daws, M. I., and Van Staden, J. 2009. Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of Botany 75: 1-7.
31. Light, M. E., Kulkarni, M. G., Ascough, G. D., and Van Staden, J. 2007. Improved flowering of a South African Watsonia with smoke treatment. South African Journal of Botany 73 (2): 298-298.
32. Lloyd, M. V., Dixon, K. W., and Sivastithamparam, K. 2000. Comparative effects of different smoke treatments on germination of Australian native plants. Australian Austral Ecology 25: 610- 615.
33. Moosavi, S. S., Abdollahi, M. R., Mazahery Laghb, B., and Mehrshad, B. 2014. Effect of plant-derived smoke extrat on some under-ground and above-ground traits of winter wheat. Iranian Journal of the Plant Production 37 (1): 81-92. (in Persian).
34. Mosseddeq, F., and Smith, D. M. 1994. Timing of nitrogen application to enhance spring wheat yield in Mediterranean climate. Agronomy Journal 86: 221-226.
35. Nassiri-Mahallati, M., Koocheki, A., Mondani, F., Feizi, H., and Amirmoradi, S., 2015. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. Journal of Cleaner Production 106: 343-350.
36. Pathak, H., Li, C., Wassmann, R., and Ladha, J. K. 2006. Simulation of nitrogen balance in rice-wheat systems of the indo-gangetic plains. Soil Science Society of America Journal 70: 1612-1622.
37. Patric, B., and Smith, D. L. 1993. Accumulation and redistribution of dry matter and nitrogen by spring barley. Agronomy Journal 85: 1114-1121.
38. Rosati, A., Metcalf, S. G., and Lampinen, B. D. 2004. A simple method to estimate photosynthetic radiation use efficiency of canopies. Annals of Botany 93: 567-574.
39. Satorre, E. H., and Slafer, G. A. 1999. Wheat, ecology and physiology of yield determination. Food Product Press, New York, P: 503.
40. Taregholeslami, M., Zarghami, R., Mashhadi, M., and Oweisi, M. 2012. Effect of nitrogen fertilizer and water deficit stress on physiological indices of corn (Zea mays L.). Iranian Journal of Agronomy and Plant Breeding 8 (1): 161-174. (in Persian).
41. Thomas, S. M., and Thorne, J. N. 1975. Effect of nitrogen fertilizer on photosynthesis and ribulose 1, 5-diphosphate carboxylase activity in spring wheat in the field. Journal of Experimental Botany 26: 43-51.
42. Thomas, T. H., and Van Staden, J. 1995. Dormancy break of celery (Apium graveolens L.) seeds by plant derived smoke extract. Plant Growth Regulation 17: 195-198.
43. Tsubo, M., Walker, S., and Ogindo, H. O. 2005. A simulation model of cereal-legume intercropping systems for semi-arid regions I. Model development. Field Crop Research 93: 10-22.
44. Van Staden, J., Jager, A. K., Light, M. E., and Burger, B. V. 2004. Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany 70 (4): 654-659.
45. Yazdani Biouki, R., Bannayan Avval, M., Khazaei, H. R., and Sodaeizadeh, H. 2014. Investigating the yield and radiation use efficiency of Wild majoram (Origanum vulgare subsp. virid) in response to urea and azocompost fertilizers. Journal of Crop Production 7 (4): 103-122. (in Persian with English abstract).
46. Zhou, J., Fang, L., Wang, X., Guo, L., and Huang, L. 2013. Effects of smoke-water on photosynthetic characteristics of Isatis indigotica seedlings. Sustainable Agriculture Research 2 (2): 24-28.
CAPTCHA Image