مقایسه محلول‌پاشی نانوذرات سیلیس و روی با مصرف خاکی بر صفات زراعی و فیزیولوژیکی برنج (Oryza sativa L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد گرگان

2 دانشگاه آزاد اسلامی واحد قائمشهر

3 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

به‌منظور بررسی اثر سیلیس و روی به دو فرم محلول‌پاشی (منبع نانوذرات) و خاک‌-مصرف (منبع معمولی) در قالب تیمارهای انفرادی یا ترکیبی بر صفات زراعی و فیزیولوژیکی برنج (Oryza sativa L.)، آزمایش مزرعه‌ای به‌صورت طرح بلوک‌های کامل تصادفی با 16 تیمار و سه تکرار در دو منطقه از استان مازندران (آمل و نور) در سال 1395 اجرا شد. نتایج نشان داد که اجزای عملکرد، عملکرد و هم‌چنین غلظت و جذب سیلیس و روی در دانه برنج با کاربرد سیلیس و روی به هر دو روش محلول‌پاشی نانو‌ذرات و خاک-‌مصرف به‌طور معنی‌داری در مقایسه با شاهد افزایش یافت. کاربرد ترکیبی سیلیس و روی به‌صورت خاک-مصرف برتری معنی‌داری نسبت به مصرف جداگانه هر دو عنصر مورد استفاده در آزمایش از نظر تعداد پنجه بارور در کپه در منطقه آمل و تعداد دانه‌های پر در خوشه در منطقه نور داشت. از نظر محلول‌پاشی نانوذرات، کاربرد ترکیبی سیلیس و روی برتر از استفاده جداگانه سیلیس از نظر تعداد پنجه بارور در هر دو مکان آزمایش و میزان غلظت و جذب روی در دانه برنج بود. بنابراین با توجه به نتایج تحقیق حاضر، استفاده از سیلیس و روی به هر دو روش محلول‌پاشی نانوذرات و خاک-‌مصرف جهت افزایش غلظت و جذب این عناصر و هم‌چنین بهبود عملکرد دانه برنج در خاک‌هایی که قابلیت دسترسی پایینی به این دو عنصر غذایی دارند مؤثر می‌باشد. 

کلیدواژه‌ها


1. Alharby, H. F., Metwali, E. M. R., Fuller, M. P., and Aldhebiani, A. Y. 2016. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanumlycopersicum L.) under salt stress. Archives of Biological Sciences 68 (4): 723-735.
2. Amanullah., and Inamullah. 2016. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Science 23 (2): 78-87.
3. Anzer-Alam, M. D., and Kumar, M. 2015. Effect of zinc on growth and yield of rice var. Pusa Basmati-1 in Saran district of Bihar. Asian Journal of Plant Science and Research 5 (2): 82-85.
4. Cuong, T. X., Ullah, H., Datta, A., and Hanh, T. C. 2017. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science 24 (5): 283-290.
5. Dhamapurkar, V. B., Talashilkar, S. C., and Sonar, K. R. 2011. Effect of calcium silicate slag on yield and silica uptake by rice. Proceedings of The 5th International Conference on Silicon in Agriculture. September 13-18. Beijing, China.
6. Dwivedi, R., and Srivastva, P. C. 2014. Effect of zink sulphate application and the cyclic incorporation of cereal straw on yields, the tissue concentration and uptake of Zn by crops and availability of Zn in soil under rice-wheat rotation. International Journal of Recycling of Organic Waste in Agriculture 3 (53): 1-12.
7. Emami, A. 1996. Methods of plant analysis. Vol 982. Soil and Water Research Institute. 130 p. (in Persian).
8. Farooq, M., Ullah, A., Rehman, A., Nawaz, A., Nadeem, A., Wakeel, A., Nadeem, F., and Siddique, K. H. M. 2018. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddle transplanted production systems. Field Crops Research 216: 53-62.
9. Ghasemi, M., Noormohammadi, Gh., Madani, H., Mobasser, H. R., and Nouri, M. Z. 2017. Effect of foliar application of zinc nano oxide on agronomic traits of two varieties of rice (Oryza sativa L.). Crop Research 52 (6): 195-201.
10. Ghasemi Lemraski, M., Normohamadi, Gh., Madani, H., Heidari Sharifabad, H., and Mobasser, H. R. 2014. Effect of silicon and potassium foliar application and nitrogen rates on yield and yield components of Iranian rice cultivars, Tarom Hashemi and Tarom Mahalli. Journal of New Finding in Agriculture 9: 47-66. (in Persian).
11. Jaksomsak, P., Rerkasem, B., and Thai, C. P. U. 2017. Response of grain zinc and nitrogen concentration to nitrogen fertilizer application in rice varieties with high-yielding low-grain zinc and low-yielding high grain zinc concentration. Plant and Soil 411 (1-2): 101-109.
12. Jeer, M., Telugu, U. M., Voleti, S. R., and Padmakumari, A. P. 2017. Soil application of silicon reduces yellow stem borer, scripophage incertulas (Walker) damage in rice. Journal of Applied Entomology 141 (3): 189-201.
13. Kheyri, N., and Mobasser, H. R. 2016. Effect of seedling age and seeding rate in nursery on some agronomic traits and seed yield of rice (Oryza sativa L.) cv. Tarom Hashemi. Journal of Crop Ecophysiology 10 (2): 431-446. (in Persian with English abstract).
14. Kim, Y. H., Khan, A. L., Shinwari, Z. K., Kim, D. H., Waqas, M., Kamran, M., and Lee, I. J. 2012. Silicon treatment to rice (Oryza sativa L. cv Gopumbyeo) plants during different growth periods and its effects on growth and grain yield. Pakistan Journal of Botany 44 (3): 891-897.
15. Lavinsky, A. O., Detmann, K. C., Reis, J. V., Avila, R. T., Sanglard, M. L., Pereira, L. F., Sanglard, L. M. V. P., Rodrigues, F. A., Araujo, W. L., and DaMatta, F. M. 2016. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. Journal of Plant Physiology 206: 125-132.
16. Longping, Y. 2004. Hybrid rice for food security in the world. FAO Rice Conference Rome, Italy. 12-13.
17. Lou, Y. S., Wu, L., Lixuan, R., Meng, Y, Shidi, Z., and Huaiwei, Z. 2016. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation. International Journal of Biometeorology 60 (2): 311-318.
18. Mahmoud, E., Abdel-Haliem, F., Hegazy, H. S., Hassan, N. S., and Naguib, D. M. 2017. Effect of silica ions and nano silica on rice plants under salinity stress. Ecological Engineering 99: 282-289.
19. Mazaherinia, S., Astaraei, A. R., Fotovat, A., and Monshi, A. 2010. Effect of nano iron oxide particles on Fe, Mn, Zn and Cu concentrations in wheat plant. Journal of World Applied Sciences 7 (1): 156-162.
20. Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., and Rao, A. S. 2014. A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 84 (3): 505-518.
21. Naik, S. K., and Das, D. K. 2007. Effect of split application of zinc on yield of rice (Oryza sativa L.) in an inceptisol. Archives of Agronomy and Soil Science 53 (3): 305-313.
22. Rezaei, R., Hosseini, S. M., Shabanali Fami, H., and Safa, L. 2009. Identification and analysis of the barriers of nanotechnology development in the iranian agricultural sector from the viewpoint of the researchers. Journal of Science and Technology Policy 2 (1): 17-26. (in Persian with English abstract).
23. Saha, A., Sarkar, R. K., and Yamagishi, Y. 1998. Effect of time of nitrogen application on spikelet differentiation and degeneration of rice. Botanical Bulletin of Academia Sinica 39: 119-123.
24. Saha, S., Chakraborty, M., Padhan, D., Saha, B., Murmu, S., Batabyal, K., Seth, A., Hazra, G. C., Mandal, B., and Bell, R. W. 2017. Agronomic biofortification of zinc in rice: influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Research 210: 52-60.
25. Sainz, M. J., Taboada-Castro, M. T., and Vilarino, A. 1998. Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with composted urban wastes. Plant and Soil 205 (1): 85-92.
26. Shivay, Y. S., Prasad, R., Kaur, R., and Pal, M. 2016. Relative efficiency of zinc sulphate and chelated zinc on zinc biofortification of rice grains and zinc use-efficiency in Basmati rice. Proceedings of the National Academy of Sciences, India Section B, Biological Sciences 86 (4): 973-984.
27. Tamai, K., and Ma, J. F. 2008. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant and Soil 307: 21-27.
28. Tiong, J., McDonald, G. K., Genc, Y., Pedas, P., Hayes, J. E., Toubia, J., Langridge, P., and Huang, C. Y. 2014. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytologist 201 (1): 131-143.
29. Tuyogon, D. S. J., Impa, S. M., Castillo, O. B., Larazo, W., and Johnson-Beebout, S. E. 2016. Enriching rice grain zinc through zinc fertilization and water management. Soil Science Society of America Journal 80 (1): 121-134.
30. Upadhyaya, H., Roy, H., Shome, S., Tewari, S., Bhattacharya, M. K., and Panda, S. K. 2017. Physiological impact of zinc nanoparticle on germination of rice (Oryza sativa L.) seed. Journal of Plant Science and Phytopathology 1: 062-070.
31. Wang, S., Wang, F., and Gao, S. 2015. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research 22 (4): 2837-2845.
32. Yazdpour, H. 2014. Role of nano-silicon and other silicon resources on uptake of nitrogen and phosphorus, lodging indics and quantitative and qualitative yield of rice (Oryza sativa L.). Ph.D thesis. Department of Agronomy. Islamic Azad University, Science and Research Branch, Tehran, Iran. 275 P.
33. Yazdpour, H., Noormohamadi, Gh., Madani, H., Heidari Sharif Abad, H., Mobasser, H. R., and Oshri, M. 2014. Role of nano-silicon and other silicon resources on straw and grain protein, phosphorus and silicon contents in Iranian rice cultivar (Oryza sativa cv. Tarom). International Journal of Biosciences 5 (12): 449-456.
34. Yoshida, S. 1975. The physiology of silicon in rice. Food and Fertilizer Technology Center (FFTC), Technical Bulletin. 25: 1-27.
35. Yuvaraj, M., and Subramanian, K. S. 2014. Fabrication of zinc nano fertilizer on growth parameter of rice. Trends in Biosciences 7 (17): 2564-2565.
36. Zia, Z., Bakhat, H. F., Saqib, Z. A., Shah, G. M., Fahad, S., Ashraf, M. R., Hammad, H. M., Naseem, W., and Shahid, M. 2017. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety 144: 11-18.