بررسی تاثیر کاربرد منابع مختلف کودی بر صفات فیزیولوژیکی و بیوشیمیایی ارقام جدید جو زراعی تحت شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تکنولوژی تولیدات گیاهی، آموزشکده فنی‌مهندسی و کشاورزی دهلران، دانشگاه ایلام، ایلام، ایران

2 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران

3 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه مراغه

چکیده

به‌منظور بررسی اثر قارچ میکوریزا بر فعالیت برخی آنزیم‌های آنتی‌اکسیدان و خصوصیات فیزیولوژیکی ارقام مختلف جو در شرایط دیم، آزمایشی مزرعه‌ای در مزرعه ایستگاه تحقیقات کشاورزی سرابله طی سال زراعی 99-1398 اجرا شد. تیمارهای آزمایشی شامل عامل ارقام جو (محلی، ماهور، خرم و فردان) و تیمار منابع کودی شامل: شاهد (عدم مصرف هیچ منبع کودی)، 50 درصد کود شیمیایی فسفر، قارچ میکوریزا (Glomus mosseae, Glomus etunicatum and Rhizophagus irregularis)، قارچ میکوریزا+50 درصد کود شیمیایی فسفر و 100 درصد کود شیمیایی فسفر بودند. نتایج حاصل از این آزمایش نشان داد که اثر برهمکنش رقم×منابع کودی بر فعالیت برخی آنزیم‌های آنتی‌اکسیدان و خصوصیات فیزیولوژیکی تاثیر معنی‌دار داشت. رقم جو فردان در قارچ میکوریزا+50 درصد کود شیمیایی فسفر موجب افزایش فعالیت‌های آسکوربات‌پراکسیداز (7/85 درصد)، گلوتاتیون‌پراکسیداز (5/86 درصد)، کاتالاز (1/76 درصد)، پراکسیداز (3/77 درصد)، سوپر اکسید‌دسموتاز (9/76 درصد)، کلروفیلa (6/88 درصد)، کلروفیل‌b (92 درصد) و موجب کاهش میزان مالون دی‌آلدئید (9/62 درصد) و پراکسیدهیدروژن (06/96 درصد) گردید و رقم جو محلی در تیمار شاهد (عدم مصرف کود شیمیایی فسفر و قارچ میکوریزا) دارای کمترین میزان فعالیت‌های آسکوربات پراکسیداز، پراکسیداز، سوپر اکسید‌دسموتاز و رنگیزه‌های فتوسنتزی بودند. با توجه به نتایج این پژوهش، در بین ارقام جو دیم مورد استفاده رقم جو فردان به همراه قارچ میکوریزا+50 درصد کود شیمیایی فسفر در زراعت دیم به دلیل بالا بودن صفات فیزیولوژیکی می‌تواند توصیه گردد.

کلیدواژه‌ها

موضوعات


  1. Abasi Syah Jani, E., Yarnai, M., Farhoosh, F., Khorshidi Benam, M., and Asadi Rahmani, H. 2017. Effect of razobium phazeoli bacteria and arbuscular mycorrhizal fungi on yield andyield components of red bean (Phaseolus Vulgaris L.) under water tension deficit. Crop Physiology Journal 10 (40): 19-34. (in Persian with English abstract).
  2. Aboul-Nasr, A. 1996. Effects of vesicular–arbuscular mycorrhiza on Tagetes erecta and Zinnia elegans.Mycorrhiza 6: 61-64.
  3. Afshar Mohamadian, M., omidipour, M., and Jamal Omidi, F. 2018. Effect of different drought stress levels on chlorophyll fluorescence indices of two bean cultivars.  Journal of Plant Research (Iranian Journal of Biology) 31 (3): 511-525. (in Persian with English abstract).
  4. Ahmad, P., Hakeem, K. R., Kumar, A., Ashraf, M., and Akram, N. A. 2012. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.).African Journal of Biotechnology11 (11): 2694-2703.
  5. Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., and Shahbazi, H. 2011. Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research 7 (3): 236-246.
  6. Ali, M. B., Hahn, E., and Paek, K. 2003. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis.PlantPhysiology and Biochemistry43: 213-223.
  7. Alipour, H., Nikbakht Etemadi, A., N., Nourbakhsh, F., and Rejali F. 2016.  The Efficiency of Mycorrhizal Fungi on Growth Characteristics and some Nutrients Uptake of Plane tree Seedling (Platanus orientalis L.). Journal of Horticultural Science 29 (4): 537-546. (in Persian with English abstract).
  8. Allen, M. F., Edith B., Jennifer L., Lansing A., Kurt S., Pregitzer B., Ron L., Hendrick C., Roger W., Ruess D., and Collins, S. L. 2010. Responses to chronic N fertilization of ectomycorrhizal pinon but not arbuscular mycorrhizal juniper in a pinon-juniper woodland. Journal of Arid Environments 74: 1170-1176.
  9. Almeselmani, M., Deshmukh, P. S., and Sairam, R. K. 2009. High temperature stresstolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agronomica Academiae Scientiarum Hungaricae57: 1-14.
  10. Amiri Farsani, F., Chorom, M., and Enayatizamir, N. 2013. Effect of biofertilizer and chemical fertilizer on wheat yield under two soil types in experimental greenhouse. Soil and Water 27 (2): 441-451. (in Persian with English abstract).
  11. Annisa, A., Chen, S., Turner, N. C., and Cowling, W. A. 2013. Genetic variation for heat tolerance during the reproductive phase in Brassica rapa.Agronomy Journal of Crop Science199: 424-435.
  12. Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23: 112-121.
  13. Arunkumar, R., Sairam, R. K., Deshmukh, P. S., Pal, M., Khetarpal, M. S., Pandey, S. K., Kushwaha, S. R. and Singh, T. P. 2012. High temperature stress and accumulation of compatible solutes in chickpea (Cicer arietinum L). Indian Journal of Plant Physiology17: 145-150.
  14. Asrar, A. W. A., and Elhindi, K. M. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences18: 93-98.
  15. Asrar, A. A., Abdel-Fattah, G. M., and Elhindi K. M. 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50 (2): 305-316.
  16. Azimi, M., Taheri, M., Khoshzaman, T., Tokasi, M., Sohrabi, E., Dadras, A., and Abdollahi, A. 2020. Investigation of Drought Tolerance Using Metabolites and Photosynthetic Characters in Zard Olive (Olea Europaea L.) Cultivar Plants. Iranian Journal of Soil and Water Research 51 (4): 873-883. (in Persian with English abstract).
  17. Baslam, M., and Goicoechea, N. 2012. Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22: 347-359.
  18. Bates, L. S., Waldren, R. P., and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1): 205-207.
  19. Berta, G., Sampo, S., Gamalero, E., Massa, N., and Lemanceau, P. 2005. Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. European Journal of Plant Pathology 111: 279-88.
  20. Borde, M., Dudhane, M., and Jite, P. 2012. Growth, water use efficiency and antioxidant defense responses of mycorrhizal and non mycorrhizal Allium sativum L. under drought stress condition. Annals of Plant Protection Sciences 1: 6-11.
  21. De Groot, C. C., Marcelis, L. F. M., van der Boogaard, R., and Lambers, H. 2001. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant, Cell and Environment 24: 1309-1317.
  22. Demir, S. 2004. Influence of arbuscular mycorrhiza on some physiological, growth parameters of pepper. Turkish Journal of Biology 28: 85-90.
  23. Efeoglu, B., Ekmekci, Y., and Cicek, N. 2009. Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany 75: 34-42.
  24. Dhindsa, R. S. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32 (1): 93-101.
  25. Eskandari, H., and Alizadeh-Amraie, A. 2017. Grain yield and energy efficiency of a barley dry land farming system as affected by supplemental irrigation at flowering stage. Journal of Crops Improvement 18 (4): 871-880. (in Persian with English abstract).
  26. Eydizadeh, K., Mahdavi Damghani, A., Sabahi, H., and Soufizadeh, S. 2010. Effect of integrated application of biofertilizer and chemical fertilizer on growth of maize (Zea mays L.) in Shushtar. Journal of Agroecology 2 (2): 292-301. (in Persian with English abstract).
  27. Fagbola, O., Osonubi, O., Mulongox, K., and Odunfa, S. A., 2001. Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricdia sepium (Jacq), Walp, Leucaenal leucocephala (Lam). De wit. In simulated eroded soil conditions.Mycorrhiza 11: 215-223.
  28. Fouad, M. O., Essahibi, A., Benhiba, A., and Qaddoury, A. 2014 Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research 12: 763-771.
  29. Hamel, C., and Plenchette, C. 2007. Mycorrhizae in crop production. Haworth, Binghampton.
  30. Hassanpour, J., and Zand, B. 2014. Effect of wheat (Triticum aestivum L.) seed inoculation with bio-fertilizers on reduction of drought stress damage. Iranian Journal of Seed Sciences and Research 1 (2): 1-12. (in Persian with English abstract).
  31. Hong, W., and Ji-Yan, J. 2007. Effects of zinc deficiency and drought stress on plant growth and metabolism of reactive oxygen species in maize (Zea mays L.). Agricultural Science in China 6 (8): 988-995.
  32. Heidari, M., and Golpayegani, A. 2011. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences 11: 57-61.
  33. Heshmati, S., Amini Dehaghi, M., Rezazadeh, A., and Fathi Amirkhiz, K. 2016. Study the effect of different phosphorus fertilizers on physiological characteristic of photosynthetic pigments and soluble sugars of safflower under water deficit condition. Iranian Journal of Field Crops Research 14 (2): 304-317.
  34. Ishikawa, T., Takahara, K., Hirabayashi, T., Matsumura, H., Fujisawa, S., Terauchi, R., Uchimiya, H., and Kawai-Yamada, M. 2010. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1. Plant Cell Physiology 51: 9-20.
  35. Kaur, R., Bains, T. S., Bindumadhava, H., and Nayyar, H., 2015. Responses of mungbean (Vigna radiata L.) genotypes to heat stress: Effects on reproductive biology, leaf function and yield traits. Scientia Horticulturaehttp://dx.doi.org/10.1016/j.scienta.2015.10.015.
  36. Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., Nayyar, H. 2013. Heat-stress induced reproductive failures in chickpea (Cicer arietinum L.) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology 40: 1334-1349.
  37. Khalafallah, A. A., Abo-Ghalia, and H. H. 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal of Applied Sciences Research 4: 559-569.
  38. Khalvati, M. A., Mozafar, A., and Schmidhalter, V. 2005. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth water relations and gas exchange of barley subjected to drought stress. Plant Biology Stuttgart7 (6): 706-712.
  39. Kumar, S., Kaur, R., Kaur, N., Bhandhari, K., Kaushal, N., Gupta, K., Bains, T. S., and Nayyar, H. 2011. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and isrelated to reduction in oxidative stress. Acta Physiologiae Plantarum 33: 2091-2101.
  40. Liang, X., Zhang, L., Natarajan, S. K., and Becker, D. F. 2013. Proline Mechanisms of Stress Survival. Antioxidant and Redox Signaling Journal 19: 998-1011.
  41. Mac-Adam, J. W., Nelson C. J., and Sharp R. E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology 99 (3): 872-878.
  42. Momeni, F., Abdali-Mashhadi, A., Siadat, S. A., Pakdaman-Sardrood, B., and Ghobadi. M. 2020. Effect of Application of Biofertilizers and Salicylic Acid on Biochemical Characteristics and Grain Elements of Chickpea Cultivars (Cicer arietinum L.) under Rainfed Conditions of Kermanshah Crop [hysiology Journal 12 (47): 5-25.  
  43. Naghavi, M. R., Toorchi, M., Moghaddam, M., and Shakiba, M. R. 2015. Evaluation of diversity and traits correlation in spring wheat cultivars under drought stress. Notulae Scientia Biologicae 7 (3): 349-354.
  44. Nakano, Y., and Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22: 867-880.
  45. Naseri, R., Barary, M., Zarea, M. J., Khavazi, K., and Tahmasebi, Z.2017a. Effect of phosphate solubilizing bacteria and mycorrhizal fungi on root charactrestics, some activities of antioxidative enzymes of wheat under dry land conditions. Applied Research of Plant Ecophysiology 5 (1): 163-188.(in Persian with English abstract).
  46. Naseri, R., Barary, M., Zarea, M. J., Khavazi, K., and Tahmasebi, Z. 2017b. Effect of Phosphate Solubilizing Bacteria and Mycorrhizal fungi on some activities of antioxidative enzymes, physiological characteristics of wheat under dry land conditions. Iranain Journal of Dryland Agriculture 6 (1): 1-34. (in Persian with English abstract).
  47. Naseri, R., Soleymani Fard, A., Mirzaei, A., Darabi, F., and Fathi, A. 2019. The effect of Plant Growth Promoting Rhizohacteria on activities of antioxidative enzymes, physiological characteristics and root growth of four chickpea (Cicer arietinum L.) cultivars under dry land conditions of Ilam province.Iranian Journal of Pulses Research 10 (2): 62-78.(in Persian with English abstract).
  48. Porcel, R., and Ruiz-Lozano, J. M. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55: 1743-50.
  49. Raesi, R., Fakheri, B., and Mahdinezhad, N. 2019. Evaluation of the effect of Glomus fascollaria on some morphological characteristics, photosynthetic pigments and antioxidant activity of Chicory (Cichorium intybus L.) under drought stress. Environmental Stresses in Crop Sciences 12 (2): 495-505. (in Persian with English abstract).
  50. Rahimi, A., Dovlati, B., Amirnia, R., and Heydarzade, S. 2020. Effect of application of mycorrhizal fungus and Azotobacter on physiological characteristics of Trigonella foenum-graecum L. under water stress conditions. Iranian Journal of Plant Biology 11 (4): 3-17. (in Persian with English abstract).
  51. Ram Rao, D. M., Kodandaramaiha, J., Reddy, M. P., Katiyar R. S. and Rahmathulla, V. K. 2007. Effect of VAM fungi and bacterial biofertilizers on mulberry leaf quality and silkworn cocoon characters under semi-aride conditions. Caspian Journal of Environmental Science 5 (2): 111-117.
  52. Robert, M., Auge, R. M., Heather, D., Carl, F., Sams, E. A., and Ghazala, N. 2008. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza18: 115-121.
  53. Ruiz-Lozano, J. M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, new perspectives for molecular studies. Mycorrhiza 13: 309-317.
  54. Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Armada, E., Polón, R., and Ruiz-Lozano, J. M. 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology 167: 862-869.
  55. Sadat, A., Savaghebi, Gh., Rejali, F., Farahbakhsh, M., Khavazi, K., and Shirmardi M. 2010. Effects of some Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria on the growth and yield indices of two wheat varieties in a saline soil. Journal of Water and Soil 24 (1): 53-62. (in Persian with English abstract).
  56. Selvaraj, T., and Chellappan, P. 2006. Arbuscular mycorrhizae: a diverse personality. Journal of Central European Agriculture 7 (2): 349-358.
  57. Shao, H. B., Chu, Y., Wu, G., Zhang, J. H., Lu, Z. H., and Hu, Y. C., 2007. Changes of some antioxidative physiological indices under soil water deficits among 10 wheats (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces 54: 143-149.
  58. Smith, S. E., and Read, D. J., 2008. Mycorrhizal Symbiosis, third ed., Academic Press, London, UK.
  59. Sohrabi, Y., Weisany, W., Heidari, Gh., Mohammadi, Kh., and Ghasemi Golezani, K. 2019. Effects of mycorrhiza fungi species application on growth and yield of chickpea (Cicer arietinum L.) under drought stress. Environmental stresses in Crop Science 12 (2): 507-524. (in Persian with English abstract).
  60. Song, H. 2005. Effects of vam on host plant in condition of drought stress and its mechanisms. Electronic Journal of Biology 1 (3): 44-48.
  61. Stewart, R. R., and Bewley, J. D. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65 (2): 245-248.
  62. Tajalli, H., Mousavi, S., Baradaran, R., Saberi, M., and Arazmjoo, E. 2013. Evaluation of 20 barley genotypes under the terminal drought condition. Journal of Crop Ecophysiology 7 (25 (1)): 91-104. (in Persian with English abstract).
  63. Talukder, A.S.M.H.M., McDonald, G. K., and Gill, G. S. 2014. Effect of short-term heat stress prior to flowering and early grain Seton the grain yield of wheat. Field Crops Research 160: 54-63.
  64. Tasang, A., and Maum, M. A. 1999. Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in coastalforedunes. University of Waterloo, Canada. Plant Ecology 144: 159-166.
  65. Tewari, A. K., and Tripathy B. C. 1998. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology 117: 851-858.
  66. Udaiyan, K., Devi, A. P. G., Chitra, A., and Greep, S. 1997.  Possible role of arbuscular mycorrhizal (AM) fungi on drought tolerance in Vigna unguiculata subsp. unguiculata (L.) Walp and Leucaena latisiliqua L. Pertanika Journal of Tropical Agricultural Science 20: 135-146.
  67. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M. R. 2007. Heat tolerance in plants: an overview. Environmental and Experimental Botany 61: 199-223.
  68. Wang, Y. J., Wang, H. M., Yang, C. H., Wang, Q., and Mei, R. H. 2007. Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiology Letters272: 206-213.
  69. Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T., and Cao, W. 2011. Pre-anthesis high-temperatureacclimation alleviates damage to the flag leaf caused by post-anthesis heat stressin wheat. Journal of Plant Physiology 168: 585-593.
  70. Wu, Q. S., Zou, and Y. N. 2009. Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environment 55: 436-442.
  71. Wu, Q. S., and Xia, R. X. 2004. The relation between vesicular-arbuscular mycorrhizae and water metabolism in plants. Chinese Agricultural Science Bulletin 20 (1): 188-192.
  72. Wu, B., Cao, Z. H., Li, Z. G., Cheung, K. C., and Wong, M. H. 2005 Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth. A greenhouse trail. Geoderma 125 (1-2): 155-162.
  73. Wu, Q. S., and Xia, R. X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well watered and water stress conditions. Journal of Plant Physiology 163: 417-425.
  74. Yooyongwech, S., Phaukinsang, N., Cha-Um, S., and Supaibulwatana, K. 2013. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation 69: 285-293.
  75. Zhu, X., Song, F., and Liu, S. 2011. Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. Journal ofFood, Agriculture and Environment 9: 583-587.
  76. Xu, P. L., Guo, Y. K., Bai, J. G., Shang, L., and Wang, X. J. 2008.Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiologia Plantarum 132: 467-478.
  77. Xu, Q. A., Paulsen, A. Q., Guikema, J. A., and Paulsen, G. M. 1995. Functional and ultrastructural injury to photosynthesis in wheat by high-temperature during maturation. Journal of Experimental Botany 35: 43-54.
  78. Yousefpoor. Z., Yadavi, A., Balouchi, H., and Farajee, H. 2014. Evaluation of yield and some physiological, morphological and phonological characteristics in sunflower (Helianthus annuus L.) influenced by biological and chemical fertilizer of nitrogen and phosphorus. Journal of Agroecology 6 (3): 508-519. (in Persian with English abstract).
  79. Zhu, X., Song, F., and Liu, S. 2011. Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. Journal of Food, Agriculture and Environment 9: 583-587.