اثر رژیم‌های مختلف آبیاری بر تجمع برخی اسمولیت‌های سازگار و فعالیت آنزیم‌های آنتی‌اکسیدان در گیاه کینوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای تخصصی فیزیولوژی گیاهان زراعی گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان

2 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران

3 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان

چکیده

کمبود آب باعث ایجاد محدودیت شدید زیست‌محیطی جهت تولید گیاهان زراعی می‌شود. گیاه کینوا با توجه به توانایی رشد تحت شرایط نامساعد محیطی و ارزش غذایی بالای آن در سال‌های اخیر توجه ویژه‌ای را به خود جلب کرده است. این آزمایش به‌منظور بررسی تاثیر دور آبیاری و سطوح مختلف آبیاری روی کینوا در سال 1398 در مزرعه تحقیقاتی دانشگاه کردستان واقع در دشت دهگلان به‌صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی در 3 تکرار اجرا شد. چهار دور مختلف آبیاری شامل 4، 8، 12 و 16 روز آبیاری به‌عنوان فاکتور اول و چهار سطح آبیاری شامل آبیاری کامل (100% نیاز آبی گیاه)، 75%، 50% و 25% نیاز آبی گیاه به‌عنوان فاکتور دوم در نظر گرفته شد. نتایج حاصل از مطالعه نشان داد با کاهش آب در دسترس گیاه و افزایش فاصله دور آبیاری محتوای پرولین، گلیسین بتائین، کربوهیدرات‌های محلول و نامحلول و فعالیت آنزیم پراکسیداز و کاتالاز افزایش یافت اما عملکرد دانه کاهش یافت. افزایش فاصله دور آبیاری از 4 به 16 روز عملکرد دانه را 84/44% کاهش داد، همچنین عملکرد دانه گیاهانی که به میزان 25% نیاز آبی، آبیاری شده بودند در مقایسه با شرایط شاهد 47/56% کاهش نشان داد.

کلیدواژه‌ها

موضوعات


  1. Aranjuelo, I., Molero, G., Erice, G., Christophe Avice, J., and Nogues, S. 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa ). The Journal of Experimental Botany 62: 111-123.
  2. Ardalani, Sh., Saeidi, M., Jalali-Honarmand, S., Ghobadi, M. E., and Abdoli, M. 2014. The physiological responses and antioxidant enzyme activity in bread wheat genotypes under post anthesis drought tension. Crop Physiology Journal 6 (4): 45-59. (in Persian with English abstract).
  3. Ashraf, M. F. M. R., and Foolad, M. R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2): 206-216.
  4. Aziz, A., Akram, N. A., and Ashraf, M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa) plants under water deficit regimes. Plant Physiology and Biochemistry 123: 192-203.
  5. Bascunan-Godoy, L., Reguera, M., Abdel-Tawab, Y. M., and Blumwald, E. 2016. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Planta 243 (3): 591-603.
  6. Bates, L. S., Waldren, R. P., and Tear, I. B. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
  7. Bergmeyer, N. 1970, “Method of enzymatic analyse”, Academia Verlag Berlin 1: 636-647.
  8. Carvalho, L. G. D., Evangelista, A. W. P., Oliveira, K. M. G., Silva, B. M., Alves, M. D. C., Júnior, S., Miranda, W. L. 2013. FAO Penman-Monteith equation for reference evapotranspiration from missing data.
  9. Daryanto, S., Wang, L., and Jacinthe, P. A. 2017. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management 179: 18-33.
  10. Elewa, T. A., Sadak, M. S., and Dawood, M. G. 2017. Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal 19 (Special Issue): 245-254.
  11. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., and Basra, S. M. A. 2009. Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht.
  12. Fghire, R., Ali, O. I., Anaya, F., Benlhabib, O., Jacobsen, S. E., and Wahbi, S. 2013. Protective antioxidant enzyme activities are affected by drought in Quinoa (Chenopodium quinoa Willd). Journal of Biology, Agriculture and Healthcare 3 (4): 62-68.
  13. Ford, K. L., Cassin, A., and Bacic, A. F. 2011. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontiers in Plant Science 2: 1-11.
  14. Gamez, A. L., Soba, D., Zamarreño, Á. M., García-Mina, J. M., Aranjuelo, I., and Morales, F. 2019. Effect of water stress during grain filling on yield, quality and physiological traits of Illpa and Rainbow quinoa (Chenopodium quinoa) cultivars. Plants 8 (6): 1-15.
  15. Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., and Taboada, C. 2008. Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa). European Journal of Agronomy 28 (3): 427-436.
  16. Gendy, A. S. H., Said, Ali. Ahl, H. A. H., and Mahmoud, A. A. 2012. Growth, productivity and chemical constituents of roselle (Hibiscus sabdariffa) plants as influenced by cattle manure and biofertilizers treatments. Australian Journal of Basic and Applied Sciences 6 (5): 1-12.
  17. Gonzalez, J. A., Gallardo, M., Hilal, M., Rosa, M., and Prado, F. E. 2009. Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies 50 (1): 35-42.
  18. Grieve, C. M., and S. R. Grattan. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70: 303-307.
  19. Habibi, G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101 (1): 31-39.
  20. Hemeda, H. M., and Kelin, B. P. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetables extracts. Journal of Food Science 55: 184-185.
  21. Jongrungklang, N., Toomsan, B., Vorasoot, N., Jogloy, S., Boote, K. J., Hoogenboom, G., and Patanothai, A. 2013. Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crops Research 144: 34-42.
  22. Kleijn, D., Treier, U. A., and Müller-Schärer, H. 2005. The importance of nitrogen and carbohydrate accumulation for plant growth of the alpine herb Veratrum album. New Phytologist 166: 565-575.
  23. Kooyers, N. J. 2015. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science 234: 155-162.‏
  24. Lehmann, S., Funck, D., Szabados, L., and Rentsch, D. 2010. Proline metabolism and transport in plant development. Amino Acids 39: 949-962.
  25. Miller, G. A. D., Suzuki, N., Ciftci‐Yilmaz, S. U. L. T. A. N., and Mittler, R. O. N. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment 33 (4): 453-467.
  26. Miranda-Apodaca, J., Yoldi-Achalandabaso, A., Aguirresarobe, A., Del-Canto, A., and Pérez-López, U. 2018. Similarities and differences between the responses to osmotic and ionic stress in quinoa from a water use perspective. Agricultural Water Management 203: 344-352.
  27. Nakabayashi, R., Yonekura‐Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., and Michael, A. J. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal 77 (3): 367-379.
  28. Nakano, Y., and Asada. K. 1981. Hydrogen proxide is scavenged by ascorbate-spesific proxidase in spinach chloroplasts. Plant Cell Physiology 22: 867-880.
  29. Naz, H., Akram, N. A., and Kong, H. 2020. Assessment of secondary metabolism involvement in water stress tolerance of quinoa (Chenopodium Quinoa) subjected to varying water regimes. Pakistan Journal of Botany 52 (5): 1553-1559.
  30. Parida, A. K., Dagaonkar, V. S., Phalak, M. S., and Aurangabadkar, L. P. 2008. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum 30 (5): 619-627.
  31. Repo-Carrasco, R., Espinoza, C., and Jacobsen, S. E. 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International 19 (1-2): 179-189.
  32. Sadiq, M., Akram, N. A., Ashraf, M., and Ali, S. 2017. Tocopherol confers water stress tolerance: sugar and osmoprotectant metabolism in mung bean [Vigna radiata (L.) Wilczek]. Agrochimica 61 (1): 28-42.
  33. Saeedipour, S., and Moradi, F. 2011. Effect of drought at the post-anthesis stage on remobilization of carbon reserves and some physiological changes in the fla leaf of two wheat cultivars differing in drought resistance. Journal of Agricultural Science 33: 81-92.
  34. Sami, F., Yousuf, M., Faizan, M., Faraz, A., and Hayat, S. 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry 109: 57-61.
  35. Sarker, U., and Oba, S. 2018. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports 8 (1): 1-12.
  36. Sinha, S., and Saxena, R. 2006. Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieriChemosphere 62 (8): 1340-1350.
  37. Song, Q., Liu, C., Bachir, D. G., Chen, L., and Hu, Y. G. 2017. Drought resistance of new synthetic hexaploid wheat accessions evaluated by multiple traits and antioxidant enzyme activity. Field Crops Research 210: 91-103.
  38. Talebnejad, R., and Sepaskhah, A. R. 2015. Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management 148: 177-188.
  39. Wang, G. P., Zhang, X. Y., Li, F., Luo, Y., and Wang, W. 2010a. Over accumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48 (1): 117-126.
  40. Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., Cheng, J. S., and Li, S. H. 2010b. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves Mbmc. Plant Biology 10 (1): 34.
  41. Yemen, E. W., and Willis, A. J. 1954. Estimation of carbohydrates in plant extracts by anthrone. Journal of Biochemistry 57: 508-514.