بهبود جذب عناصر غذایی، عملکرد و اجزای عملکرد گندم با ترکیبات محرک رشد تحت آبیاری نرمال و تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسنده

بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران

چکیده

طی سال‌‏های اخیـر جهت رسیدن به اهداف کشاورزی پایدار استفاده از محرک‏‌های زیستی به‌منظور جلوگیری از کاربرد بیش از حد کودهای شیمیایی و القای تحمل به تنش‌‏های محیطی افزایش یافته است. بهبود غلظت عناصر غذایی و عملکرد گندم با استفـاده از ترکیبات محرک رشد تحت شرایط آبیاری نرمال و تنش خشکی فرضیه در این پژوهش بود. آزمایش به‌صورت اسپلیت پلات، در قالب طرح بلوک‏‌های کامل تصادفی با سه تکرار طی دو سال زراعی 98-1396 انجام شد. عامل اصلی شامل فواصل مختلف آبیاری در دو سطح (آبیاری بعد از 70 و 140 میلی‏‌متر تبخیر تجمعی از تشتک تبخیر کلاس A) و عامل فرعی استفاده از محرک‏‌های زیستی در هفت سطح (شاهد بدون محرک رشد، مصرف خاکی اسید هیومیک، محلول‏‌پاشی اسید آمینه، اسید فولویک و عصاره جلبک دریایی، مصرف مایع تلقیح ازتو باکتر و تلفیق ترکیبات محرک رشد) بودند. نتایج نشان داد که بیشترین میزان غلظت عناصر پرمصرف و کم مصرف کاه و دانه از تلفیق ترکیبات محرک رشد به‌دست آمد. پس از این افزایش معنی‏‌دار غلظت عناصر در مصرف منفرد ترکیبات محرک رشد مشاهده شد. آبیاری پس از 140 میلی‏‌متر تبخیر تجمعی از تشتک تبخیر سبب کاهش‏ وزن خشک کاه و کلش، عملکرد دانه و بیولوژیک و شاخص برداشت نسبت به 70 میلی‌‏متر تبخیر تجمعی از تشتک تبخیر شد. تلفیق ترکیبات محرک رشد و پس از آن ترکیبات منفرد اجزای عملکرد گندم را بهبود دادند. بنابراین ترکیبات محرک رشد از طریق بهبود جذب عناصر غذایی سبب تحمل به تنش خشکی شدند. همچنین تلفیق ترکیبات محرک رشد در افزایش عملکرد دانه گندم نقش به‌سزایی داشت.

کلیدواژه‌ها

موضوعات


  1. Aamir, M., Rai, K. K., Zehra, A., Dubey, M. K., Kumar, S., Shukla, V., and Upadhyay, R. S. 2020. Microbial bioformulation-based plant biostimulants: a plausible approach toward next generation of sustainable agriculture. Microbial Endophytes. pp. 195-225. https://doi.org/10.1016/B978-0-12-819654-0.00008-9.
  2. Anjum, N. A., Gill, S. S., and Gill, R. 2014. Plant adaptation to environmental change: significance of amino acids and their derivatives (CABI).
  3. Arif, M., Ilyas, M., Riaz, M., Ali, K., Shah, K., Haq, I. U., and Fahad, S. 2017. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Research 214: 25-37. https://doi.org/10.1016/j.fcr.2017.08.018.
  4. Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M., and Salehi, A. 2020. Improving growth and phenolic compounds of Echinacea purpurea root by integrating biological and chemical resources of phosphorus under water deficit stress. Industrial Crops and Products 154: 112763. https://doi.org/10.1016/j.indcrop.2020.112763.
  5. Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M., and Salehi, A. 2019. Improvement of Echinacea purpurea performance by integration of phosphorus with soil microorganisms under different irrigation regimes. Agricultural Water Management 221: 238-247. https://doi.org/10.1016/j.agwat.2019.04.022.
  6. Battacharyya, D., Babgohari, M. Z., Rathor, P., and Prithiviraj, B. 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae 196: 39-48. https://doi.org/10.1016/j.scienta.2015.09.012.
  7. Bellaloui, N., Ebelhar, M. W., Gillen, A. M., Fisher, D. K., Abbas, H. K., Mengistu, A., Reddy, K. N., and Paris, R. L. 2011. Soybean seed protein, and fatty acids are altered by S and S+N fertilizers under irrigated and nonirrigated environments. Agricultural Sciences 2 (4): 465-476. http://dx.doi.org/10.4236/as.2011.24060.
  8. Bulgari, R., Franzoni, G., and Ferrante, A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9 (6): 1-30. https://doi.org/10.3390/agronomy9060306.
  9. Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., and Piccolo, A. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196: 15-27. https://doi.org/10.1016/j.scienta.2015.09.013.
  10. Dehkhoda, A., Naderidarbaghshahi, N., Rezaei, A., and Majdnasiri, B. 2013. Effect of water efficiency stress on yield and yield component of sunflower cultivars in Isfahan. International Journal of Farming and Allied Sciences 2 (2): 1319-1324.
  11. Dotaniya, M. L., and Meena, V. D. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 85: 1-12. https://doi.org/10.1007/s40011-013-0297-0.
  12. Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196: 3-14. https://doi.org/10.1016/j.scienta.2015.09.021.
  13. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29: 185-212. https://doi.org/10.1007/978-90-481-2666-8_12.
  14. Flakelar, C. L., Luckett, D. J., Howitt, J. A., Dorana, , and Prenzler, P. D. 2015. Canola (Brassica napus) oil from Australian cultivars shows promising levels of tocopherols and carotenoids, along with good oxidative stability. Journal of Food Composition and Analysis 42: 179-186. https://doi.org/10.1016/j.jfca.2015.03.010.
  15. Garcia-Mina, J., Antolin, M., and Sanchez-Diaz, M. 2004. Metal-humic complexes and plant micronutrient uptake: A study based on different plant species cultivated in diverse soil types. Plant and Soil 258: 57-68. https://doi.org/10.1023/B:PLSO.0000016509.56780.40.
  16. Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., and Yermiyahu, U. 2015. The use of biostimulants for enhancing nutrient uptake. In: Sparks, D.L. (Ed.), Advances in Agronomy 129: 141-174. https://doi.org/10.1016/bs.agron.2014.10.001.
  17. Hopkins, B., and Ellsworth, J. 2003. Phosphorus nutrition in potato production. Idaho Potato Conference, Idaho University.
  18. Khan, A., Guramni, A. R., Khan, M. Z., Hussain, F., Akhtar, M. E., and Khan. S. 2012. Effect of humic acid on growth, yield, nutrient composition, photosynthetic pigment and total sugar contents of peas (Pisum sativum). Journal of Chemical Society of Pakistan 6: 56-63.
  19. Khatiwada, A., Neupane, I., Sharma, B., Bhetwal, N., and Pandey, B. 2020. Effects of drought stress on yield and yield attributing characters of wheat: A Review. Agriways 8 (2): 115-121.
  20. Klokic, I., Koleska, I., Hasanagic, D., Murtic, S., Bosancic, B., and Todorovic, V. 2020. Biostimulants’ influence on tomato fruit characteristics at conventional and low-input NPK regime. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science 70: 233-240. https://doi.org/10.1080/09064710.2019.1711156.
  21. Kumar, R., Trivedi, K., Anand, K. V., and Ghosh, A. 2020. Science behind biostimulant action of seaweed extract on growth and crop yield: insights into transcriptional changes in roots of maize treated with Kappaphycus alvarezii seaweed extract under soil moisture stressed conditions. Journal of Applied Phycology 32: 599-613. https://doi.org/10.1007/s10811-019-01938-y.
  22. Lang, C. A. 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials. Analytical Chemistr. 30: 1692-1694. https://doi.org/10.1021/ac60142a038.
  23. Layek, J., Das, A., Idapuganti, R. G., Sarkar, D., Ghosh, A., Zodape, S. T., Lal, R., Yadav, G. S., Panwar, A. S., and Ngachan, S. 2018. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. Journal of Applied Phycology 30: 547-558. https://doi.org/10.1007/s10811-017-1225-0.
  24. Liu, D. Y., Zhang, W., Pang, L. L., Zhang, Y. Q., Wang, X. Z., Liu, Y. M., Chen, X. P., Zhang, F. S., and Zou, C. Q. 2017. Effects of zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn concentration in wheat. Plant and Soil 411 (1-2): 167-178. https://doi.org/10.1007/s11104-016-2953-7.
  25. Madison, W. 1971. Instrumental method for analysis of soil and plant tissue. Soil Science Society USA, pp. 182-247.
  26. Mishra, L. K., and Abidi, A. B. 2010. Phosphorous-Zinc interaction: effect on yield components and biochemical composition and bread making qualities of wheat. World Applied Sciences Journal 10 (5): 568-573.
  27. Moshiri, F., Tehrani, M. M., Shahabi, A. A., Keshavarz, P., khoogar, Z., Faizi Asl, W., Asadi Rahmani, H., Samavat, S., Sadri, M. H., Rashidi, N., and Khademi, Z. 2016. A manual for intrgrated management of soil fertility and weath nutrition. Soil and Water Research Institute, Tehran, Iran.
  28. Ova, E. A., Kutman, U. B., Ozturk, L., and Cakmak, I. 2015. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil 393: 147-162. https://doi.org/10.1007/s11104-015-2483-8.
  29. Pylak, M., Oszust, K., and Frąc, M. 2019. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Bio/Technology 1-20. https://doi.org/10.1007/s11157-019-09500-5.
  30. Raimondo, M., Nazzaro, C., Marotta, G., and Caracciolo, F. 2021. Land degradation and climate change: Global impact on wheat yields. Land Degradation and Development 32: 387-398. https://doi.org/10.1002/ldr.3699.
  31. Rajaie, M., and Charkhandeh M. 2019. Improvement of the yield and grain protein in barley (Hordeum valgare) by iron, manganese and zinc foliar spray. 16 (1): 1-14.
  32. Razi, K., and Muneer, S. 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology 41 (5): 1-40. https://doi.org/10.1080/07388551.2021.1874280.
  33. Romero-Munar, A., Del-Saz, N. F., Ribas-Carbó, M., Flexas, J., Baraza, E., Florez-Sarasa, I., Fernie, A. R., and Gulías, J. 2017. Arbuscular mycorrhizal symbiosis with arundo donax decreases root respiration and increases both photosynthesis and plant biomass accumulation. Plant, Cell Environment 40: 1115-1126. https://doi.org/10.1111/pce.12902.
  34. Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., and Cavagnaro, T. R. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. In: Sparks, D.S. (Ed.), Advances in Agronomy 124: 37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4.
  35. Rouphael, Y., and Colla, G. 2020. Biostimulants in agriculture. Frontiers in Plant Science 11. https://doi.org/10.3389/fpls.2020.00040.
  36. Sabagh, A. E., Hossain, A., Barutçular, C., Islam, M. S., Ratnasekera, D., Kumar, N., Meena, R. S., Gharib, H. S., Saneoka, H., and da Silva, J. A. T. 2019. Drought and salinity stress management for higher and sustainable canola (Brassica napus) production: A critical review. Australian Journal of Crop Science 13: 88.
  37. Saeidi, M., Moradi, F., and Abdoli, M. 2017. Impact of drought stress on yield, photosynthesis rate, and sugar alcohols contents in wheat after anthesis in semiarid region of Iran. Arid Land Research and Management 31: 204-218. https://doi.org/10.1080/15324982.2016.1260073.
  38. Shaikh, S., and M. Saraf. 2017. Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatalysis and Agricultural Biotechnology 9: 120-126. https://doi.org/10.1016/j.bcab.2016.12.008.
  39. Supraja, K., Behera, B., and Balasubramanian, P. 2020. Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Industrial Crops and Products 151: 112453. https://doi.org/10.1016/j.indcrop.2020.112453.
  40. Tejada, M., Rodríguez-Morgado, B., Paneque, P., and Parrado, J. 2018. Effects of foliar fertilization of a biostimulant obtained from chicken feathers on maize yield. European Journal of Agronomy 96: 54-59. https://doi.org/10.1016/j.eja.2018.03.003.
  41. Trethowan, R. M., and Mujeeb-Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science 48: 1255-1265. https://doi.org/10.2135/cropsci2007.08.0477.
CAPTCHA Image