تاثیر پوترسین و کودهای زیستی بر محتوای سدیم و پتاسیم ریشه و اندام‌های هوایی، هدایت روزنه‌ای، شاخص سطح برگ و عملکرد گندم تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته دکتری زراعت، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

چکیده

به‌منظور بررسی تاثیر کودهای زیستی و پوترسین بر بهبود محتوای سدیم و پتاسیم، هدایت روزنه‌ای و شاخص سطح برگ گندم تحت تنش شوری، آزمایش فاکتوریلی در قالب طرح پایه بلوک کامل تصادفی با سه تکرار در گلخانه تحقیقاتی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال 1398 اجرا شد. عامل‌های آزمایشی شوری در چهار سطح (عدم اعمال شوری و شوری‌های 40، 80 و120 میلی‌مولار با نمک کلرید سدیم)، کاربرد کودهای زیستی در چهار سطح (عدم کاربرد کود زیستی به‌عنوان شاهد، کاربرد توأم سودوموناس و فلاوباکتریوم، کاربرد میکوریز، کاربرد توأم میکوریز با سودوموناس و فلاوباکتریوم) و محلول‌پاشی پوترسین در سه سطح (محلول‌پاشی با آب به‌عنوان شاهد، 5/0 و 1 میلی‌مولار) شامل می‌شدند. نتایج نشان داد که با افزایش شوری محتوای پتاسیم، هدایت روزنه‌ای و شاخص سطح برگ کاهش یافت. ولی کاربرد کودهای زیستی و پوترسین این صفات را افزایش داد. در بالاترین سطح شوری (120میلی‌مولار) یک کاهش 94/24 و 57/21 درصدی به‌ترتیب در محتوای سدیم ریشه و اندام هوایی در کاربرد توأم میکوریزا، سودوموناس و فلاوباکتریوم و محلول‌پاشی یک میلی‌مولار پوترسین نسبت به عدم کاربرد کودهای زیستی و عدم محلول‌پاشی پوترسین در همان سطح شوری وجود داشت. در بالاترین سطح شوری، کاربرد توأم میکوریزا، سودوموناس و فلاوباکتریوم و محلول‌پاشی یک میلی‌مولار پوترسین محتوای پتاسیم ریشه (76/47 درصد) و اندام هوایی (66/21 درصد) و عملکرد دانه (57/28 درصد) را نسبت به عدم کاربرد کودهای زیستی و عدم محلول‌پاشی پوترسین در همان سطح شوری افزایش داد. به‌نظر می‌رسد کاربرد کودهای زیستی و پوتریسین می‌تواند به‌دلیل بهبود هدایت روزنه‌ای و شاخص سطح برگ، عملکرد دانه گندم را تحت تنش شوری را افزایش دهد.

کلیدواژه‌ها

موضوعات


Open Access

©2023 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Alvarez, M. I., Sueldo, R. J., & Barassi, C. A. (1996). Effect of Azospirillum on coleoptile growth in wheat seedling under water stress. Cereal Research Communication, 24, 101-107.
  2. Asch, F., Dingkuhn, M., & Droffling, K. (2000). Salinity increases CO2 assimilation but reduces growth in field growth irrigated rice. Plant Soil, 218, 1-10. https://doi.org/10.1023/A:1014953504021
  3. Ashraf, M., & McNielly, T. (2004). Salinity tolerance in Brassica oil seeds. Critical Reviews in Plant, 34, 34-45. https://doi.org/10.1080/07352680490433286
  4. Atiya, A. M., Poortvliet, E., Stromberg, R., & Yngve, A. (2011). Polyamines in foods: development of a food database. Food Nutrition Research, 14(55), 1-15. https://doi.org/10.3402/fnr.v55i0.5572
  5. Auge, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84, 373-381.
  6. Baniasadi, F., Saffari, V. R., & Maghsoudi moud, A. (2015). Effect of putrescine on some physiological and morphological characteristics of pot marigold (Calendula officinalis) under salinity stress. Envirometal Stresses in Crop Science, 8(1), 73-82. https://doi.org/10.22077/escs.2015.202
  7. Bashan, Y., Ivanony, Y. H., & Saad, A. (1989). Nonspecific response in plant growth, yield and root colonization of non-cereal crop plant to inoculation with Azospirilum brasilense. Canadian Journal of Botany, 67, 1317-1324. https://doi.org/10.1139/b89-175
  8. Beltrano, J., Montaldi, E., Bartoli, C., & Carbone, A. (1997). Emission of water stress ethylene in wheat (Triticum aestivum) ears: Effects of rewatering. Plant Growth Regulation, 21, 121-126.
  9. Boomsma, C. R., & Vyn, T. J. (2008). Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis. Field Crops Research, 108, 14-31. https://doi.org/10.1016/j.fcr.2008.03.002
  10. Chelah, M. K. B., Nordin, M. N. B., Musliania, M. I., Khanif, Y. M., & Jahan, M. S. (2011). Composting increases BRIS soil health and sustains rice production on BRIS soil. Scienceasia, 37, 291-295. https://doi.org/10.2306/scienceasia1513-1874.2011.37.291
  11. Chen, Z., Newman, I., Zhuo, M., Mendham, N., Zhang, G., & Shabala, S. (2005) Screening plants for salt tolerance by measuring K+ flux:a case study for barely. Plant Cell and Environment, 28, 1230-1246. https://doi.org/10.1111/j.1365-3040.2005.01364.x
  12. Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Carlos, M. R., & Elvira, R. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44, 501-509. https://doi.org/1007/s00374-007-0232-8
  13. Colom, M. R., & Vazzana, C. (2003). Photosynthesis and PSII functionality of drought resistant and drought sensitive weeping lovegrass plant. Environmental and Experimental Botany, 49, 135-144.
  14. Cuartero, J., Bolarin, M. C., Asins, M. J., & Moreno, V. (2006). Increasing salt tolerance in tomato. Journal of Experimental Botany, 57, 1045-1058. https://doi.org/10.1093/jxb/erj102
  15. Duponnois, R., Galiana, A., & Prin, Y. (2008). The Mycorrhizosphere effect: A multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In: Siddiqui Z.A., Akhtar M.S., Futai K. (eds) Mycorrhizae: Sustainable Agriculture and forestry, Dordrecht: Springer.
  16. Elhindi, K. M., El-Din, A. S., & Elgorban, A. M. (2016). The impact of arbuscular mycorrhizal fungi in mitigating saltinduced adverse effects in sweet basil (Ocimum basilicum). Saudi Journal of Biological Science, 1-33. https://doi.org/10.1016/j.sjbs.2016.02.010
  17. Garg, N., & Bhandari, P. (2015). Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum genotypes under salinity stress. Plant Growth Regulation, 371-378. https://doi.org/10.1007/s10725-015-0099-x
  18. Giri, B., Kapoor, R., & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753-760. https://doi.org/10.1007/s00248-007-9239-9
  19. Glick, B. R., Penrose, D., & Wendo, M. (2001). Bacterial promotion of plant growth. Biotechnology Advance, 19, 135-138. https://doi.org/10.1016/s0734-9750(00)00065-3
  20. Grattan, S. R., & Grieve, C. M. (1999) Salinity-mineral nutrient relations in horticultural crops. Journal of Horticultural Science, 78, 127-157.
  21. Hadi, H., Seyed Sharifi, R., & Namvar, A. (2016). Phytoprotectants and Abiotic Stresses. Urmia University press. 342p.
  22. Hagh Bahari, M., & Seyed Sharifi, S. (2013). Influence of seed inoculation with plant growth promoting rhizobacteria (PGPR) on yield, grain filling rate and period of wheat in different levels of soil salinity. Environmental Stresses in Crop Sciences, 6(1), 65-75. https://doi.org/22077/escs.2013.138
  23. Hammer, E. C., Nasr, H., Pallon, J., Olsson, P. A., & Wallander, H. (2011). Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 21, 117-129. https://doi.org/1007/s00572-010-0316-4
  24. Hanafy Ahmed, A. H., Darwish, E., Hamoda, S. A. F., & Alobaidy, M. G. (2013). Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. American-Eurasian Journal of Agricultural and Environmental Sciences, 13, 479-497. https://doi.org/5829/idosi.aejaes.2013.13.04.1965
  25. He, T., & Cramer, G. R. (1993). Salt tolerance of rapid cycling Brassica species in relation to K+ /Na+ ratio and selectivity at the whole plant and callus levels. Journal of Plant Nutrition, 16, 1263-1277.
  26. Hussein, M. M., Nadia, H. M., EL-Gereadly, & EL-Desuki, M. (2006). Role of puterscine in resistance to salinity of Pea plants (Pisum sativum). Journal of Applied Science Research, 2(9), 598-604.
  27. Jamil, M., Rehman,, Jae Lee, K., Man Kim, J., Kim, H. S., & Rha, E. S. (2007). Salinity reduced growth PS2 Photo chemistry and chlorophyll content in Radish. Science Agriculture, 64, 111-118. https://doi.org/10.1590/S0103-90162007000200002
  28. Kafi, M., & Stewart, D. A. (1998). Effect of salinity on growth and yield of nine types of wheat. Agronomy Food Science, 12(1), 77-85.
  29. Karlidag, H., Esitken, A., Yildirim, E., Figen-Donmez, M., & Turan, M. (2011). Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawbwrry under saline conditions. Journal of Plant Nutrrition, 23, 157-174. https://doi.org/101080/01904167.2011.531356
  30. Kaya, C., Akram, N., Ashraf, M., & Sonmez, O. (2018). Exogenous application of humic acid mitigates salinitystress in maize (Zea mays) plants by improving some key physicobiochemical attributes. Cereal Research Communications, 46(1), 67-78. https://doi.org/10.1556/0806.45.2017.064
  31. Kheirizadeh Arough, Y., Seyed Sharifi, R., Sedghi, M., & Barmaki, M. (2016). Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in Triticale under salinity condition. Notula Botanica Horticultural Agro Cluj-Napoca, 44(1), 116-124. https://doi.org/15835/nbha44110224
  32. Mass, E. V., & Poss, J. A. (1989). Salt sensitivity of wheat at various growth stages. Irrigation Science 10(1), 29-40.
  33. Moradi, F., & Abdelbagi, M. I. (2007). Response of photosynthesis, chlorophyll fluorescence and ROS- scavenging systems to salt stress during seeding and reproductive stages in rice. Annals Botany, 1-13. https://doi.org/1093/aob/mcm052
  34. Moradi, L., & Seyed Sharifi, R. (2018). Response of antioxidant enzymes, chlorophyll content and leaf area index of Rye to seed inoculation with plant growth promoting bacteria under salinity conditions. Crop Physiology Journal, 7(38), 77-93.
  35. Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal Experimental Botany, 57, 1025-1043. https://doi.org/10.1093/jxb/erj100
  36. Nadeem, S. M., Zahir, Z. A., Naveed, M., Arshad, M., & Shahzad, S. M. (2006). Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil and Environment, 25, 78-84.
  37. Ortas, I., Sari, N., Akpinar, C., & Yetisir, H. (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae, 128(2), 92-98. https://doi.org/10.1016/j.scienta.2010.12.014
  38. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants-a review. Plant, Soil and Environment, 54, 89-99.
  39. Prasad, T. N., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T. S., & Sajanlal, P. R. (2012). Effect of nanoscale Zinc-oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35, 905-927. https://doi.org/1080/01904167.2012.663443
  40. Ravikumar, S., Kathiresan, K., Ignatiammal, S. T. M., Selvam, M. B., & Shanthy, S. (2004). Nitrogen fixation Azotobacters from mangrove habitat and their utility as marine biofertilizers. Journal of Experimental Biology, 15, 157-160. https://doi.org/1016/j.jembe.2004.05.020
  41. Rabie, A. M., & Almadini, G. H. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4(3), 210-222.
  42. Rengel, Z. (1992). The role of calcium in salt toxicity. Plant, Cell and Environment, 15, 625-632. https://doi.org/1111/j.1365-3040.1992.tb01004.x
  43. Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339. https://doi.org/1016/S0734-9750(99)00014-2
  44. Sandhya, V., Ali, S. K. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62, 21-30.
  45. Seyed Sharifi, R., & Golineghad, E. (2021). Evalution Agronomic and Morphophysiological Traits of Crop Plants. University of Mohaghegh Ardabili press. 400 pp.
  46. Sfakianaki, M., Sfichi, L., & Kotzabasis, K. (2006). The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. Journal of Photochemistry and Photobiology B: Biology, 84, 181-188. https://doi.org/1016/j.jphotobiol.2006.03.003
  47. Shiyab, S. (2011). Effects of NaCl application to hydroponic nutrient solution on macro and micro elements and protein content of hot pepper (Capsicum annuum). Journal of Food, Agriculture and Environment, 9, 350-356.
  48. Talaat, I. M., Bekheta, M. A., & Mahgoub, M. H. (2005). Physiological response of periwinkle plants (Catharanthus roseus) to tryptophan and putrescine. International Journal of Agriculture and Biology, 7, 210-213.
  49. Wang, H., Ju, X., Wei, Y., Li, B., Zhao, L., & Hu, K. (2010) Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agricultural Water Management, 97(10), 1646-1654. https://doi.org/1016/j.agwat.2010.05.022
  50. Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of bio fertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125, 155-166. https://doi.org/1016/j.geoderma.2004.07.003
  51. Zahir, Z. A., Munir, A., Asghar, H. N., Arshad, M., & Shaharoona, B. (2008). Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Journal of Microbioogyl Biotechnology, 18, 958-963.
  52. Zhu, X., Song, F., & Xu, (2010). Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20, 325-332.
CAPTCHA Image