اثر محلول‌پاشی عصاره جلبک دریایی بر رشد و عملکرد ژنوتیپ‌های مختلف گیاه کینوا (Chenopodium quinoa Willd.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ژنتیک و به‌نژادی، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران

2 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

چکیده

به‌منظور بررسی اثر سطوح مختلف کود عصاره جلبک دریایی بر رشد و عملکرد ژنوتیپ‌های مختلف کینوا (Chenopodium quinoa Willd.)، آزمایشی به‌صورت اسپلیت پلات بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار انجام شد. عامل اصلی اثر عصاره جلبک دریایی در سه سطح شاهد (بدون عصاره جلبک دریایی)، محلول‌پاشی با عصاره جلبک دریایی 10 درصد و محلول‌پاشی با عصاره جلبک دریایی 20 درصد بود. عامل فرعی نیز نوع ژنوتیپ کینوا شامل پنج ژنوتیپ جیزا 1، تیتیکاکا، رزادا، کانکولا و Q12 بود. اثر استفاده از عصاره جلبک دریایی بر صفات روز تا گل‌دهی، روز تا رسیدگی فیزیولوژیک، طول گل‌آذین، وزن هزاردانه و محتوای ساپونین دانه در سطح یک درصد و بر صفت ارتفاع بوته در سطح پنج درصد معنی‌دار شد. اثر ساده ژنوتیپ بر تمامی صفات به غیر از صفت وزن هزاردانه در سطح یک درصد معنی­دار بود. اثر متقابل کود × ژنوتیپ، بر صفت روز تا گل‌دهی در سطح پنج درصد معنی‌دار بود. استفاده از عصاره جلبک دریایی موجب کاهش تعداد روز تا گل‌دهی (3.8 روز)، روز تا رسیدگی (4.8 روز)، ارتفاع بوته (پنج درصد) و طول گل‌آذین (10 درصد) شد؛ بااین‌حال بر میزان عملکرد دانه، وزن تر و خشک اندام هوایی اثری نداشت. بالاترین عملکرد دانه مربوط به ژنوتیپ Q12 (2477 کیلوگرم در هکتار) و بالاترین وزن هزاردانه مربوط به ژنوتیپ جیزا 1 (2.47 گرم) بود. ارتفاع بوته همبستگی منفی معنی‌داری با عملکرد دانه و وزن هزاردانه نشان داد. با توجه به نتایج این پژوهش، استفاده از عصاره جلبک دریایی جهت کاهش طول دوره رشد قابل‌توصیه است.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

  1. Abdelazim Sayed, A. A. (2018). Chemical and technological evaluation of quinoa (Chenopodium quinoa Willd.) cultivated in Egypt. Journal of Acta Scientific Nutritional Health, 7(2), 42-53.
  2. Ahmed, Y. M., & Shalaby, E. A. (2012). Effect of different seaweed extracts and compost on vegetative growth, yield and fruit quality of cucumber. Journal of Horticultural Science and Ornamental Plants4(3), 235-240. https://doi.org/10.5829/idosi.jhsop.2012.4.3.252
  3. Aminian, R., Mafakheri, S., & Tahtani, S. (2018). Effect of biological fertilizers on some physiological traits of quinoa. The First National Conference on Recent Developments in Engineering and Modern Science. Qarchak, Iran. (in Persian)
  4. Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M. W., Hamar, A., Khajehei, F., & Piatti, C. (2020). Quinoa (Chenopodium quinoa): An overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), 216. https://doi.org/10.3390/foods9020216
  5. Bagheri, M. (2018). Quinoa Cultivation Handbook. Seed and plant improvment Institiut. Seed and Plant Improvment Institute. Karaj. Iran. 48 pp. (in Persian).
  6. Bagheri, M., Anafjeh, Z., Keshavarz, S., & Foladi, B. (2021). Evaluation of quantitative and qualitative characteristics of new quinoa genotypes in spring cultivation at Karaj. Iranian Journal of Field Crops Research, 18(4), 465-475. (in Persian with English abstract). https://doi.org/10.22067/jcesc.2020.37139.0
  7. Bagheri, M., Miri, Kh., Khoshkam, S. G., Anafjeh, Z., & Keshavarz, S. (2022). Assessment of adaptability and seed yield stability of autumn sown quinoa (Chenopodium quinoa) genotypes using AMMI analysis. Seed and Plant Journal, 38(4), 453-472. (in Persian with English abstract). https://doi.org/10.22092/spj.2023.362282.1308
  8. El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., Kacimi, K. E. L., & Yasri, A. (2020). An insight into saponins from quinoa (Chenopodium quinoa Willd): A review. Molecules, 25(5), 1–22. https://doi.org/10.3390/molecules25051059
  9. Etaati, M., Ardakani, M., Bagheri, M., Paknejad, F., & Golzardi, F. (2023). Grain yield adaptability and stability of quinoa (Chenopodium quinoa) genotypes using different stability indices. Journal of Crop Ecophysiology, 17(1), 1-14. (in Persian with English abstract). http://doi.org/10.22067/jam.v12i2.81004
  10. Graf, B. L., Rojas‐Silva, P., Rojo, L. E., Delatorre‐Herrera, J., Baldeón, M. E., & Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa). Comprehensive Reviews in Food Science and Food Safety, 1(4), 431-445. https://doi.org/10.1111%2F1541-4337.12135
  11. Han, H. S., & Lee, K. D. (2006). Effect of inoculation with phosphate and potassium co-in solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52(3), 130-136. https://doi.org/17221/3356-PSE
  12. Hirich, A., Choukr‐Allah, R., & Jacobsen, S. E. (2014). Quinoa in Morocco–Effect of sowing dates on development and yield. Journal of Agronomy and Crop Science, 200(5), 371-377. https://doi.org/10.1111/jac.12071
  13. Jacobsen, S. E., Monteros, C., Christiansen, J. L., Bravo, L. A., Corcuera, L. J., & Mujica, A. (2005). Plant responses of quinoa (Chenopodium quinoa) to frost at various phenological stages. European Journal of Agronomy, 22(2), 131-139. https://doi.org/10.1016/j.eja.2004.01.003
  14. Karami, M. (2021). The effect of seed priming alone and combined with foliar spraying or silicon irrigation on the growth and yield of pinto beans under drought stress. Thesis, Agriculture Faculty. Shahrekord University. Shahrekord, Iran. 71 pp. (in Persian with English abstract)
  15. Koziol, M. J. (1991). Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa). Journal of Science of Food and Agriculture, 54(2), 211–219. https://doi.org/10.1002/jsfa.2740540206
  16. Lilian, E. A. J. (2009). Quinoa (Chenopodium quinoa ): Composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 58, 1-3. https://doi.org/10.1016/s1043-4526(09)58001-1
  17. Mansouri, A. (2022). The effect of seed cultivation, priming and boron (B) foliar spraying on morphophysiological and phytochemical traits of quinoa genotypes (Chenopodium quinoa willd.). PhD. Thesis, Agriculture Faculty. Shahed University, Tehran, Iran. (in Persian with English abstract).
  18. Mansouri, A., Omidi, H., & Bostani, A. (2022). The effect of planting method and boron nutrition on phenological traits and seed yield of quinoa (Chenopodium quinoa). Crop Physiology Journal, 54(14), 123-138. (in Persian with English abstract).
  19. Mansouri, A., Omidi, H., & Bostani, A. (2023). Effect of direct sowing, transplanting, priming and boron failor application on growth and yield of quinoa genotypes. Journal of Crops Improvement25(2), 469-484. (in Persian with English abstract). https://doi.org/10.22059/jci.2022.343131.2709
  20. Mansouri, A., & Omidi, H. (2023). Introduction and Cultivation of Valuable Quinoa Plant. Iran Univesity Press. Tehran, Iran. 158 pp. (in Persian).
  21. Miri, K. (2018). Examining the compatibility of quinoa genotypes with Iranshahr region. Final report of the research project of Balochistan Agriculture and Natural Resources Research and Education Center (Iranshahr). Agricultural Research and Promotion Organization. (in Persian).
  22. Moalem, A., & Eshqizade, H. (2007). Application of biological fertilizers: Advantages and limitations. Second National Conference of Ecological Agriculture of Iran. Gorgan University of Agricultural Sciences and Natural Resources. Gorgan, Iran. (in Persian).
  23. Molaie. A. (2017). Evaluation of compatibility and response of some quinoa cultivars to day length in Shahrekord. The Final Report of the Research Project of the Research and Education Center for Agriculture and Natural Resources of Chaharmahal and Bakhtiari Province. Agricultural Research and Promotion Organization. (in Persian).
  24. Nadali, F., Asghari, H., Abbasdokht, H., Dorostkar, V., & Bagheri, M. (2022). Agrophysiological response of different cultivars of Chenopodium quinoa Willd to hydropriming under drought stress conditions. Crop Science Research in Arid Regions, 4(1), 1-18. (in Persian with English abstract). https://doi.org/10.22034/csrar.2022.333785.1211
  25. Naneli, I., & Dokuyucu, T. (2017). Response of the quinoa genotypes to different locations by grain yield and yield components. International Journal of Agriculture Innovations and Research, 3(6), 446-451.
  26. Norrie, J., & Keathley, J. (2006). Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson seedless’ grape production. Acta Horticulturae, 727(27), 243-245. https://doi.org/10.17660/ActaHortic.2006.727.27
  27. Pise, N. M., & Sabale, A. B. (2010). Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. Journal of Phytology, 2(4), 50-56
  28. Prager, A., Munz, S., Nkebiwe, P. M., Mastand, B., & Graeff-Honninger, S. (2018). Yield and quality characteristics of different quinoa (Chenopodium quinoa) cultivars grown under field conditions in southwestern Germany. Agronomy Journal, 10(8), 1-19. https://doi.org/10.3390/agronomy8100197
  29. Ramezanpour, S., Soltanloo, M., Seyfi, H., & Salehi, A. (2015). The first report of the successful cultivation and propagation of vegetable caviar (quinoa) in Golestan province. Research Proposal Report. Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (in Persian)
  30. Salehi, M., & Dehghani, F. (2018). Quinoa, a suitable grain for brackish water sources. Publications of the Agricultural Research, Education and Promotion Organization. Tehran, Iran. 31 pp. (in Persian).
  31. Santis, G., Maddaluno, C., Ambrosio, T., Rascio, A., Rinaldi, M., & Troisi, J. (2016). Characterization of quinoa (Chenopodium quinoa) accessions for the saponin content in Mediterranean environment. Italian Journal of Agronomy, 11(4), 277-281. https://doi.org/10.4081/ija.2016.774
  32. Sarjamei, F., Khorasani, S., & Nezhad, N. (2014). Effect of planting methods and plant density, on morphological, phenological, yield and yield component of baby corn. Journal of Advance in Agriculture and Biology, 2(8), 20-25.
  33. Shahbazi, F., Seyyed Nejad, F., Salimi, M., & Gilani, A. (2015). Effect of seaweed extracts on the growth and biochemical constituents of wheat. International Journal of Agriculture and Crop Sciences, 8(3), 283-287.
  34. Spann, T. M., & Little, H. A. (2011). Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’sweet orange nursery trees. Hort Science, 46(4), 577-582. https://doi.org/10.21273/HORTSCI.46.4.577
  35. Taghadosi, M., Hasani, N., & Sinki, J. (2012). Irrigation stress and spraying with humic acid and seaweed extract in antioxidant enzymes and proline in sorghum. Crop Production under Environmental Stresses, 4(1), 1-12.
  36. Telahigue, D., Yahia, L. B., Aljane, F., Belhouchett, K., & Toumi, L. (2017). Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa). under drought stress. Science of Food and Agriculture, 1, 222-232. https://doi.org/10.25081/jsa.2017.v1.67
CAPTCHA Image