Parameterization and Evaluation of the SSM-iCrop Model for Predicting Growth, Phenological Development, and Yield of Grain Maize (Zea mays L.) in Iran

Document Type : Research Article

Authors

Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Introduction
The nation's substantial maize (Zea mays L.) requirements are currently met through imports. Given the scarcity of arable land and water resources, enhancing yield per unit area is the only viable solution to augment domestic production. Significant progress can be made toward this goal by optimizing production management to narrow the yield gap. Utilizing a reliable simulation model can play a pivotal role in reducing the yield gap and achieving optimal yields through evaluating various management practices. Effective management strategies are essential to optimize maize production and ensure food security. While field experiments can provide valuable insights, they can be resource-intensive, time-consuming, and even impractical due to complex interactions between environmental and management factors. Crop simulation models offer a powerful alternative, enabling the exploration of various scenarios and the identification of optimal management practices. These models simulate plant growth and development in response to climate variables, soil conditions, management inputs, and genetic traits, providing valuable information for decision-making. Accurate parameterization is crucial for reliable crop model predictions. This study aims to parameterize and evaluate the SSM-iCrop model for predicting grain maize yield and nitrogen dynamics in Iran.
Materials and Methods
Simple Simulation Models (SSM), were initially developed for soybean yield prediction in 1986. The model has since been refined to simulate various crops, including maize. SSM-iCrop simulates daily plant growth and development processes, such as phenology, leaf area development, dry matter production, yield formation, and water and nitrogen dynamics. The model has been successfully used in various studies for different plants. Moreover, comparisons of this model with other crop models have shown its effectiveness in simulating yield. The SSM-iCrop model requires input data on weather parameters (minimum and maximum temperature, precipitation, and solar radiation), soil properties, cultivar-specific parameters, and management practices (planting date, plant density, irrigation, and nitrogen fertilization). The SSM-iCrop model was parameterized and calibrated in this study using data from various studies conducted in Iran between 2001 and 2022. The calibration process involved adjusting plant parameters within a reasonable range, as determined by scientific literature, to minimize the difference between simulated and observed data. The parameters that yielded the best fit were selected as the final estimates. Lastly, the model was evaluated using different studies.
Results and Discussion
The SSM-iCrop model accurately simulated key maize growth stages, including emergence, tasseling, silking, and physiological maturity (RMSE = 13.22, CV = 17.4, r = 0.97). The model also accurately predicted leaf area index (RMSE = 0.4, CV = 6.2, r = 0.98), biological yield (RMSE = 431.3, CV = 23.9, r = 0.66), and grain yield (RMSE = 161.9, CV = 16.9, r = 0.81). Compared to previous studies, such as Zeinali et al. (2016), the current study demonstrated superior performance in grain yield prediction. While Zeinali et al. (2016) did not explicitly simulate nitrogen dynamics, the current study considered nitrogen processes. Manschadi et al. (2021) reported high accuracy in simulating grain maize yield in Austrian conditions. The difference in accuracy between the two studies may be attributed to the quality of the observed data, as accurate parameterization is crucial for model performance. Although this study incorporated nitrogen fertilization treatments and examined the impact of nitrogen-related parameters on yield, dry matter production, and leaf area, specific nitrogen-related traits were not evaluated. This is because existing research has primarily focused on the overall effects of nitrogen fertilization on yield and yield components, often neglecting the measurement of nitrogen content in critical plant tissues such as leaves and grains.
Conclusion
The performance of the SSM-iCrop model for simulating key maize growth stages, leaf area index, and biological and grain yield was suitable. This model is a valuable tool for simulating maize yield and optimizing management practices in Iran. By simulating the impact of different environmental factors and management strategies, the model can help farmers and policymakers make informed decisions to improve maize production and ensure food security.

Keywords

Main Subjects


Authors retain the copyright. This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abidi, A., Soltani, A., & Zeinali, E. (2024). Identifying plant traits to increase wheat yield under irrigated conditions. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e31734
  2. Ali, M. G. M., Ahmed, M., Ibrahim, M. M., El Baroudy, A. A., Ali, E. F., Shokr, M. S., Aldosari, A. A., Majrashi, A., & Kheir, A. M. S. (2022). Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. International Journal of Biometeorology, 66(5), 971-985. https://doi.org/10.1007/s00484-022-02253-x
  3. Basso, B., Liu, L., & Ritchie, J. T. (2016). A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances. In D. L. Sparks ed., Advances in Agronomy, 136, 27-132. Academic Press, Cambridge, UK. https://doi.org/10.1016/bs.agron.2015.11.004
  4. Beah, A., Kamara, A. Y., Jibrin, J. M., Akinseye, F. M., Tofa, A. I., & Ademulegun, T. D. (2021). Simulation of the optimum planting windows for early and intermediate-maturing maize varieties in the nigerian savannas using the APSIM model. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.624886
  5. Chisanga, C. B., Moombe, M., & Elijah, P. (2022). Modelling climate change impacts on maize. CABI Reviews, 2022. https://doi.org/10.1079/cabireviews202217008
  6. Eradatmand Asli, D., Farrokhi, G. R., & Usefi Rad, M. (2009). Effect of pyridoxine and different levels of nitrogen on yield and yield components of corn (Zea mays Var. SC. 704). Journal on Plant Science Researches, 14(2), 9.
  7. (2021). http://www.fao.org/faostat
  8. García-Lara, S., & Serna-Saldivar, S. O. (2019). Chapter 1 - Corn history and culture. pp. 1-18 in S. O. Serna-Saldivar (Ed.), Corn (3rd Edition). AACC International Press and Woodhead Publishing, Cambridge, UK. https://doi.org/10.1016/B978-0-12-811971-6.00001-2
  9. Ghadiri, H., & Majidian, M. (2003). Effect of different nitrogen fertilizer levels and moisture stress during milky and dough stages on grain yield, yield components and water use efficiency of corn (Zea mays). Journal of Water and Soil Science, 7(2), 103-113. (in Persian with English abstract). http://jstnar.iut.ac.ir/article-1-467-fa.html
  10. Ghobadi, R., Ghobadi, M., Mondani, F., Jalali Honarmand, S., & Farhadi Bansooleh, B. (2017). Effect of irrigation and nitrogen interactions on phenologic characteristics and growth indices of seed corn. Plant Process and Function, 6(21), 20. (in Persian with English abstract). http://dorl.net/dor//20.1001.1.23222727.1396.6.21.13.5
  11. Guiguitant, J., Marrou, H., Vadez, V., Gupta, P., Kumar, S., Soltani, A., Sinclair, T. R., & Ghanem, M. E. (2017). Relevance of limited-transpiration trait for lentil (Lens culinaris) in South Asia. Field Crops Research, 209, 96-107. https://doi.org/10.1016/j.fcr.2017.04.013
  12. Haghshenas, H., Soltani, A., Ghanbari Malidarreh, A., Ajam Norouzi, H., & Dastan, S. (2020). Selecting the ideotype of improved rice cultivars using multiple regression and multivariate models. Archives of Agronomy and Soil Science, 66(8), 1134-1153. https://doi.org/10.1080/03650340.2019.1658866
  13. Hammer, G. L., van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., & Muchow, R. C. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61(8), 2185-2202. https://doi.org/10.1093/jxb/erq095
  14. Hammer, G., Messina, C., Wu, A., & Cooper, M. (2019). Biological reality and parsimony in crop models—why we need both in crop improvement. In Silico Plants, 1(1), diz010. https://doi.org/10.1093/insilicoplants/diz010
  15. Izadi, M. H., & Emam, Y. (2009). Effect of planting pattern, plant density and nitrogen levels on grain yield and yield components of maize cv. SC704. Iranian Journal of Crop Sciences, 12(3), 13. (in Persian with English abstract). http://dorl.net/dor/1001.1.15625540.1389.12.3.2.3
  16. Jing, Q., Boote, K. J., Liu, K., Hoogenboom, G., White, J. W., Smith, W., Jégo, G., Grant, B., Crépeau, M., Shang, J., Liu, J., Chipanshi, A., & Qian, B. (2024). Simulating the development and growth of lentil using the CSM-CROPGRO model. Agronomy Journal, 116(5), 23. https://doi.org/10.1002/agj2.21654
  17. Kafaie Ghaeini, A., Soltani, A., Deihimfard, R., & Ajam Norouzi, H. (2023). Modifying sowing date as an adaptation strategy to climate change in grain maize (Zea mays) under mild-arid climates as simulated by the SSM-Maize model. International Journal of Plant Production, 17(3), 437-447. https://doi.org/10.1007/s42106-023-00252-5
  18. Karimi, H., Mazaheri, D., Peyghambari, S. A., & Mirabzadeh Ardakani, M. (2011). Effect of organic and chemical fertilizers application on grain yield and yield components of maize (Zea mays) SC704. Iranian Journal of Crop Sciences, 13(4), 16. (in Persian with English abstract). http://dorl.net/dor/20.1001.1.15625540.1390.13.4.2.2
  19. Kimball, B. A., Thorp, K. R., Boote, K. J., Stockle, C., Suyker, A. E., Evett, S. R., Brauer, D. K., Coyle, G. G., Copeland, K. S., Marek, G. W., Colaizzi, P. D., Acutis, M., Alimagham, S., Archontoulis, S., Babacar, F., Barcza, Z., Basso, Bertuzzi, P., Constantin, J., De Antoni Migliorati, M., Dumont, B., Durand, J. L., Fodor, N., Gaiser, T., Garofalo, P., Gayler, S., Giglio, L., Grant, R., Guan, K., Hoogenboom, G., Jiang, Q., Kim, S. H., Kisekka, I., Lizaso, J., Masia, S., Meng, H., Mereu, V., Mukhtar, A., Perego, A., Peng, B., Priesack, E., Qi, Z., Shelia, V., Snyder, R., Soltani, A., Spano, D., Srivastava, A., Thomson, A., Timlin, D., Trabucco, A., Webber, H., Weber, T., Willaume, M., Williams, K., van der Laan, M., Ventrella, D., Viswanathan, M., Xu, X., & Zhou, W. (2023). Simulation of evapotranspiration andyield of maize: An inter-comparison among 41 maize models. Agricultural and Forest Meteorology, 333, 109396. https://doi.org/10.1016/j.agrformet.2023.109396
  20. Kiniry, J. R. (1991).Maize phasic development. In R. J. Hanks & J. T. Ritchie (Eds.), Modeling plant and soil systems (pp. 55–70). Agronomy Monograph No. 31. Madison, WI: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2134/agronmonogr31.c4
  21. Koo, J., & Dimes, J. (2013). HC27 Generic Soil Profile Database. Harvard Dataverse. https://doi.org/10.7910/DVN/90WJ9W
  22. Lak, S., Naderi, A., Siyadat, S. A., Ayenehband, A., & Nourmohammadi, G. (2006). Effect of different levels of nitrogen and plant density on grain yield and its components and water use efficiency of maize (Zea mays) cv. SC. 704 under different moisture conditions in Khuzestan. Iranian Journal of Crop Sciences, 8(2), 153-170. (in Persian with English abstract). http://agrobreedjournal.ir/article-1-297-fa.html
  23. Madadizadeh, M., & Amiri, S. R. (2022). Evaluation of growth, development and yield of maize cultivars for sustainable nitrogen management. Journal of Agricultural Science and Sustainable Production, 32(4), 22. (in Persian with English abstract). https://doi.org/10.22034/saps.2022.47202.2717
  24. Madadizadeh, M., Amiri, S. R., Kambouzia, J., & Soufizadeh, S. (2023). Calibration and evaluation of APSIM model for simulation of growth and development of KSC 704 and maxima maize hybrids under different amounts of nitrogen. Iranian Journal of Field Crops Research, 20(4), 18. (in Persian with English abstract). https://doi.org/10.22067/jcesc.2022.71744.1071
  25. Madadizadeh, M., Kambouzia, J., & Soufizadeh, S. (2017). Evaluation of maize (Zea mays) hybrids thermal time requirements of different soil fertility in the arid climate of Kerman. Iranian Journal of Applied Ecology, 6(2), 10. (in Persian with English abstract). https://doi.org/10.18869/acadpub.ijae.6.2.43
  26. Madadizadeh, M., Kambouzia, J., Soufizadeh, S., & Panahi, B. (2017). Evaluation of physiological responses of maize hybrids to different nitrogenlevels in Kerman province, Iran. Iranian Journal of Field Crops Research, 15(2), 14. (in Persian with English abstract). https://doi.org/10.22067/gsc.v15i2.60121
  27. Manschadi, A. M., Eitzinger, J., Breisch, M., Fuchs, W., Neubauer, T., & Soltani, A. (2021). Full parameterisation matters for the best performance of crop models: Inter-comparison of a simple and a detailed maize model. International Journal of Plant Production, 15(1), 61-78. https://doi.org/1007/s42106-020-00116-2
  28. Manschadi, A. M., Palka, M., Fuchs, W., Neubauer, T., Eitzinger, J., Oberforster, M., & Soltani, A. (2022). Performance of the SSM-iCrop model for predicting growth and nitrogen dynamics in winter wheat. European Journal of Agronomy, 135, 126487. https://doi.org/10.1016/j.eja.2022.126487
  29. Messina, C. D., Sinclair, T. R., Hammer, G. L., Curan, D., Thompson, J., Oler, Z., Gho, C., & Cooper, M. (2015). Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agronomy Journal, 107(6), 1978-1986. https://doi.org/10.2134/agronj15.0016
  30. Muchow, R. C., & Sinclair, T. R. (1991). Water deficit effects on maize yields modeled under current and “greenhouse” climates. Agronomy Journal, 83(6), 1052-1059. https://doi.org/10.2134/agronj1991.00021962008300060023x
  31. Muchow, R. C., Sinclair, T. R., & Bennett, J. M. (1990). Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal, 82(2), 338-343. https://doi.org/10.2134/agronj1990.00021962008200020033x
  32. Nehbandani, A., Barani, H., Soltani, A., Torabi, B., & Sharifian Bahraman, A. (2023). Estimating rangeland production in current and future conditions using SSM-iCrop2 model in Iran. Agricultural Research, 12(3), 346-355. https://doi.org/10.1007/s40003-023-00652-z
  33. Nehbandani, A., Soltani, A., Nourbakhsh, F., & Dadrasi, A. (2020). Estimating crop model parameters for simulating soybean production in Iran conditions. Oilseeds & fats Crops and Lipids, 27, 1-9. https://doi.org/10.1051/ocl/2020057
  34. Nehbandani, A. R., Soltani, A., Zeinali, E., Raeisi, S., & Najafi, R. A. (2015). Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. Journal of Plant Production Research, 22(3), 1-26. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23222050.1394.22.3.1.2
  35. Ochieng’, I. O., Gitari, H. I., Mochoge, B., Rezaei-Chiyaneh, E., & Gweyi-Onyango, J. P. (2021). Optimizing maize yield, nitrogen efficacy and grain protein content under different N forms and rates. Journal of Soil Science and Plant Nutrition, 21(3), 1867-1880. https://doi.org/10.1007/s42729-021-00486-0
  36. Pickering, N. B., Hansen, J. W., Jones, J. W., Wells, C. M., Chan, V. K., & Godwin, D. C. (1994). WeatherMan: A utility for managing and generating daily weather data. Agronomy Journal, 86(2), 332-337. https://doi.org/10.2134/agronj1994.00021962008600020023x
  37. Rugira, P., Ma, J., Zheng, L., Wu, C., & Liu, E. (2021). Application of DSSAT CERES-Maize to identify the optimum irrigation management and sowing dates on improving maize yield in Northern China. Agronomy, 11(4), 674. https://www.mdpi.com/2073-4395/11/4/674
  38. Saddique, Q., Cai, H., Ishaque, W., Chen, H., Chau, H. W., Chattha, M. U., Hassan, M. U., Khan, M. I., & He, J. (2019). Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (crop estimation through resource and environment synthesis)-Maize model. Agronomy, 9(2), 109. https://doi.org/10.3390/agronomy9020109
  39. Sadeghi, H., & Bahrani, M. J. (2001). Effect of plant density and nitrogen rates on yield and yield components of corn (Zea mays). Iranian Journal of Crop Sciences, 3(2), 13. (in Persian with English abstract). http://agrobreedjournal.ir/article-1-439-fa.html
  40. Salo, T. J., Palosuo, T., Kersebaum, K. C., Nendel, C., Angulo, C., Ewert, F., Bindi, M., Calanca, P., Klein, T., Moriondo, M., Ferrise, R., Olesen, J. E., Patil, R. H., Ruget, F., TakÁČ, J., Hlavinka, P., Trnka, M., & RÖTter, R. P. (2016). Comparingthe performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154(7), 1218-1240. https://doi.org/10.1017/S0021859615001124
  41. Shen, H., Xu, F., Zhao, R., Xing, X., & Ma, X. (2020).Optimization of sowing date, irrigation, and nitrogen management of summer maize using the DSSAT-CERES-Maize model in the Guanzhong plain, China. Transactions of the ASABE, 63(4), 789-797. https://doi.org/10.13031/trans.13654
  42. Sinclair, T. R., & Muchow, R. C. (1995). Effect of nitrogen supply on maize yield: I. modeling physiological responses. Agronomy Journal, 87(4), 632-641. https://doi.org/10.2134/agronj1995.00021962008700040005x
  43. Soltani, A., & Hoogenboom, G. (2007). Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research, 103(3), 198-207. https://doi.org/10.1016/j.fcr.2007.06.003
  44. Soltani, A., & Sinclair, T. R. (2012). Modeling Physiology of Crop Development, Growth and Yield. Wallingford, Oxfordshire, UK: CABI Publishing. 322 p.
  45. Soltani, A., & Sinclair, T. R. (2015). A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37-46. https://doi.org/10.1016/j.fcr.2014.10.019
  46. Soltani, A., Maddah, V., & Sinclair, T. R. (2013). SSM-Wheat: Asimulation model for wheat development, growth and yield. International Journal of Plant Production, 7(4), 711-740. https://doi.org/10.22069/ijpp.2013.1266
  47. Tang, J., Wang, J., Fang, , Wang, E., Yin, H., & Pan, X. (2018). Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 98, 82-94. https://doi.org/10.1016/j.eja.2018.05.008
  48. (2023). Statistics of Crops Production in Iran, The Year 1402. (in Persian). https://www.maj.ir/
  49. Yakoub, A., Lloveras, J., Biau, A., Lindquist, J. L., & Lizaso, J. I. (2017). Testing and improving the maize models in DSSAT: Development, growth, yield, and N uptake. Field Crops Research, 212, 95-106. https://doi.org/10.1016/j.fcr.2017.07.002
  50. Zeinali, E., Soltani, A., & Khadempir, M. (2016). Parameterization of SSM-Maize model for growth and yield simulation in Gorgan. Gorgan University of Agricultural Sciences and Natural Resources. Reasearch Report. (in Persian with English abstract).
CAPTCHA Image