The Effects of Foliar Application of Methanol on Morphological Characteristics of Bean (Phaseolus vulgaris L.) under Drought Stress Condition

Document Type : Research Article

Authors

Lorestan University

Abstract

Introduction
Available water is an important factor for plant growth in arid environments. Results indicated that foliar application of methanol is believed to be more important than the drought tolerance in C3 plant. Since bean is a C3 plant, it performs light respiration under intense heat, light and water stress due to internal leaf CO2 concentration reduction and oxygen concentration increase. Light respiration can cause up to 20% loss of carbon in plants and decrease the yield. Increasing concentration of carbon dioxide can neutralize the effect caused by drought stress. Thus, the use of substances that can cause an increase in the concentration of carbon dioxide in the plant, leads to improving the yield under the drought conditions. One of the ways of increasing the concentration of carbon dioxide in plants is by using compounds such as methanol, ethanol, propanol, butanol as well as use of the amino acids of glycine, glutamate and aspartate. Plants can easily absorb methanol sprayed on leaves and use it as a carbon source added to atmospheric carbon. Methanol is relatively smaller compared to the CO2 molecules, so it can be easily absorbed and utilized by plants.

Materials and Methods
In order to evaluate the effects of foliar application of methanol on some morphological characteristics of bean under drought stress, a factorial experiment was conducted based on completely randomized block design with three replications in 2014 at the Khatam Alanbia University of Behbahan. The treatment of spraying methanol was at 4 levels include control (without spraying), 10, 20 and 30% v/v methanol which added 2 g l-1 glycine to each of solutions. Adding glycine to aqueous solution of methanol leads to prevention of damages caused by the toxicity of methanol. The drought factors including control (100% field of capacity), moderate drought stress (50% field of capacity) and severe drought stress (25% field of capacity) were considered. In this experiment, each experimental unit was a pot of 1 kg and 5 seeds were planted in each pot and after emergence decreased to 3 seedlings per pot. They were placed in a growth chamber with day and night temperatures as 25 °C and 15°C, respectively. Drought stress treatment based on soil moisture percentage was adjusted by measuring the weight percent of soil moisture and adding water consumed daily by each pot. Foliar application was done 3 times during the growing season and at intervals of 10 days. The first foliar application was performed during the seedling stage within 4 weeks after planting and other foliar application, respectively in early flowering and early podding. The foliar application was performed in such a way that solution droplets were present at all parts of the bean. Trait measurement was carried out 35 days after planting.

Results and Discussion
Results showed that there was significant difference (P 0.01) between methanol and drought stress regarding the plant height, number of branches, leaf number per pod, root and shoot dry weight, tap root length, root area, root diameter, root volume, and number of pod (P 0.05). All of the morphological traits were mainly affected by severe drought stress. The results of the comparing mean data in the interactions of methanol and drought stress showed that 20% methanol level in non-drought stress significantly increased in plant height, number of branches, root dry weight, root diameter and number of pod compared with control. 20% methanol level in temperate drought stress condition significantly increased the number of pod compared with non-applied methanol foliar application. Severe drought conditions in other traits except plant height difference between the levels of methanol and the methanol was observed.

Conclusions
Present study showed that the use of methanol at 20% by volume of methanol without the stress could be effective but failed to reduce the negative effects of drought stress on bean (Phaseolus vulgaris L.cv. sadry) plants.

Keywords


1. Abanda, D., Musch, M., Tschiersch, J., and Schawb, M. 2006. Molecular interaction between Methylobacterium extorquens and seedling growth promotion, methanol consumption and localization of the methanol emission site. Journal of Experimental Botany 57 (15): 4025-4032.
2. Ahmadpour, R., Hosseinzadeh, S. R., Armand, N., and Fani, E. 2015. Effect of methanol on germination characteristics of lentil (Lens culinaris Medik.) under drought stress. Iranian Journal of Seed Research 2: 83-96. (in Persian with English abstract).
3. Bagheri, A., Mahmoudi, A., and Ghezeli, F. 2001. Common Bean: Research for Crop Improvement. Jahad daneshgahi press. 556 pp.
4. Benson, A. A., and Nonomura, A. M. 1994. The path of carbon in photosynthesis: methanol inhibition of glycolic acid accumulation. Photosynthesis Research 34: 196-206.
5. Blum, A. 1996. Crop response to drought and the interpretation adaptation. Plant Growth Regulation 20: 135-148.
6. Boyer, J. S., Armand, P. A., and Sharp, R. E. 1987. Light stress and leaf water relations. Photoinhibition, Elsevier Science Publishers, Amsterdam. pp: 111-122.
7. Dorri, H. R. 2008. Bean Agronomy. Publication Series of Research Center of Bean, Khomein. 46 PP.
8. Doss, B. D., Pearson, R., and Wand Howard, T. R. 1974. Effect of soil water stress at various growth stages on soybean yield. Agronomy Journal 66: 297-299.
9. Downie, A., Miyazaki, S., Bohnert, H., John, P., Coleman, J., Parry, M., and Haslam, R. 2004. Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Photochemistry 65: 2305-2316.
10. Ehyaei, H. R., Parsa, M., Kafi, M., and Nasiri mahalati, M. 2010. Effect of foliar application of methanol and irrigation regimes on yield and yield components of chickpea cultivars. Iranian Journal of Pulses Research 1: 37-48. (in Persian with English abstract).
11. Fischer, R. A. 2001. Selection traits for improving yield potential. In: M.P. Reynolds, J.I. Ortiz- Monasterio and A. McNab (Eds.). Application of Physiology in Wheat Breeding. D.F. CIMMYT. Mexico p. 148-159.
12. Gamze, O. K. U., Mehmet Demir, K. A. Y., and Mehmet, A. T. A. 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture 29: 237-242.
13. Ganjeali, A., and Kafi, M. 2007. Genotypic differences for allometric relationships between root and shot characteristics in Chickpea (Cicer arietinum L.). Pakistan Journal of Botany 39: 1523-1531.
14. Ganjeali, A., Kafi, M., Bagheri, A., and Shahriyari, F. 2004. Allometric relationship between root and shoot characteristics of chickpeas seedling (Cicer arietinum L.). Iranian Journal of Field Crops Research 18: 67-80. (in Persian with English abstract).
15. Gout, E., Aubert, S., Bligny, R., Rebeille, F., Nonomura, A., Benson, A., and Douce, R. 2000. Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiology 123: 287-296.
16. Hanson, A. D., and Roje, S. 2001. One carbon metabolism in higher plants. Annual Review of Plant Physiology 52: 119-138.
17. Heins, R. 1980. Inhibition of ethylene synthesis and senescence in carnation by ethanol. Journal of the American Society for Horticultural Science 105 (1): 141-144.
18. Holland, M. A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiology 115: 865-868.
19. Hosseinzadeh, S. R., Amiri, H., and Ismaili A. 2015. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, doi: 10.1007/s11099-015-0162-x.
20. Hosseinzadeh, S. R., Salimi, A. Ganjeali, A., and Ahmadpour, R. 2012. Effects of foliar application of methanol on growth and root characteristics of chickpea (Cicer arietinum L.) under drought stress. European Journal of Experimental Biology 2 (5): 1697-1702.
21. Hosseinzadeh, S. R., Salimi, A. Ganjeali, A., and Ahmadpour, R. 2014. Effects of foliar application of methanol on photosynthetic characteristics chlorophyll fluorescence and chlorophyll content of chickpea (Cicer arietinum L.) under drought stress. Iranian Journal of Plant Biology 5: 116-129. (in Persian with English abstract).
22. Ivanova, E. G., Dornina, N. V., and Trotsenko, Y. A. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70: 392-397.
23. Jalota, S. K., Anil, S., and Harman, W. L. 2006. Assessing the response of chickpea (Cicer arietinum L.) yield to irrigation water on two soils in Punjab (India). Agricultural Water Management 79: 312-320.
24. Leport, L., Turner, N. C., Davies, S. L., and Siddique, K. H. M. 2006. Variation in pod production and abortion among chickpea cultivars under terminal drought. Europian Journal of Agronomy 24: 236-246.
25. Li, Y., Gupta, J., and Siyumbano, A. K. 1995. Effect of methanol on soybean photosynthesis and chlorophyll. Journal of Plant Nutrition 18: 1875-1880.
26. Madhaiyan, M., Poonguzhali, S., Sundaram, S. P., and Sa, T. A. 2006. New insight into foliar applied methanol influencing phylloplane methylotrophic dynamics and growth promotion of cotton (Gossypium hirsutum L.) and sugarcane (Saccharum officinarum L.). Environmental and Experimental Botany 57: 168-176.
27. Makhdum, I. M., Nawaz, A., Shabab, M., Ahmad, F., and Illahi, F. 2002. Physiological response of cotton to methanol foliar application. Journal of Research Zakariya University, Multan, Pakistan 13: 37-43.
28. Mauney, J. R., and Gerik, T. J. 1994. Evaluating methanol usage in Cotton. National Cotton Council of America Memphis, TN, USA. pp: 40.
29. Mirakhori, M., Paknejad, F., Moradi, P., Nazeri, P., and Nasri, M. 2010. Effects of foliar application of methanol on (Glycine max L.). Journal of Agroecology 2: 236-244. (in Persian with English abstract).
30. Muchow, R. C., Sinclair, T., and Rennetl, I. M. 1990. Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal 82: 238-343.
31. Nadali, I., Paknejad, F., Moradi, F., and Vazan, S. 2010. Effect of methanol on yield and some quality characteristics of Sugar Beet (Beta vulgaris L.) cv. Rasoul in Drought and Non-Drought Stress Conditions. Journal of Seed and Plant Improvement 26: 95-108. (in Persian with English abstract).
32. Nemecek-Marshall, M., MacDonald, R. C., Franzen, J. J., Wojciechowski, C. L., and Fall, R. 1995. Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiology 108: 1359-1368.
33. Nonomura, A. M., and Benson, A. A. 1992. The path of carbon in photosynthesis: Improved crop yields with methanol. National Academic Science, USA. 89: 9794-9798.
34. Rahbarian, R., Khavari-nejad, R., Ganjeali, A., Bagheri, A. R., and Najafi, F. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water. Acta Biologica Cracoviensia-Series Botanica 53: 47-56.
35. Rajala, A., Karkkainen, J., Peltonen, J., and Peltonen-Sainio, P. 1998. Foliar applications of alcohols failed to enhance growth and yield of C3 crops. Industrial Crop Production 7: 129-137.
36. Ramadan, T., and Omran, Y. 2005. The effects of foliar application of methanol on productivity and fruit quality of grapevine cv.flame seedlees. Vitis Journal 44: 11-16.
37. Ramirez, I., Dorta, F., Espinoza, V., Jimenez, E., Mercado, A., and Pena-Cortes, H. 2006. Effects of foliar and root applications of methanol on the growth of arabidopsis, tobacco and tomato plants. Journal Plant Growth Regulation 25: 30-44.
38. Richner, W., Soidati, A., and Stamp, P. 1996. Shoot to root relation in field grown maize seedlings. Agronomy Journal 88: 56-61.
39. Rowe, R. N., Farr, D. J., and Richards, B. A. J. 1994. Effects of foliar and root applications of methanol or ethanol on the growth of tomato plants (Lycopersicon esculentum.L). New Zealand Journal of Crop and Horticultural Science 22: 335-337.
40. Saxena, N. P., Singh, S. C., Sethi, L., Krishnamurthy, S., Singh, D., and Johansen, C. 2005. Genetic enhancement of drought tolerance in chickpea (short note). (WWW. ICRISAT.org).
41. Sheldrake, A. R., and Saxena, N. D. 1979. The growth and development of chickpea under progressive moisture stress. Stress Physiology in Crop Plants 5: 58-74.
42. Van, I., Heitholt, M. W., Wells, J. J., and Oosterhuis, D. M. 1995. Foliar methanol applications to cotton in the Southeastern United States, leaf physiology, growth and yield components. Agronomy Journal 87: 1157-1160.
43. Vyshkahi, M., Noormohammadi, Gh., Majidi, A., and Rabii, B. 2008. Effect of methanol on the growth function peanuts. Special Issue Journal of Agricultural Sciences 1: 102-87. (in Persian with English abstract).
44. Zbiec, I., Karczmarczyk, S., and Podsiadlo, C. 2003. Response of some cultivated plants to methanol as compared to supplemental irrigation. Electronic Journal of Polish Agricultural Universities 6 (1): 1-7.
CAPTCHA Image