Drought Stress Effect during Different Growth Stages on Yield, Osmolites and Photosynthetic Pigments Accumulation of Grain Sorghum Genotypes (Sorghum bicolor L.)

Document Type : Research Article

Authors

1 South Khorassan Agricultural and Natural Resources Research and Education Center

2 Zabol University

3 Khorassan Razavi Agricultural and Natural Resources Research and Education center

Abstract

Introduction
Osmotic adjustment in plants can be achieved by the accumulation of compatible solution or metabolites. These compounds are known as compatible metabolites that accumulate naturally in tolerant plants due to non-interference in the normal metabolic response of plants to adapt or supplement. Proline, soluble sugars and other metabolites accumulation that are involved in osmotic adjustment have been reported for various plants. Different studies show that water absorption in sorghum plant, is due to osmotic adjustment and appropriate and fairly extensive root system. Moreover, there are some differences from genotype to genotype regarding the osmolites accumulation under drought stress conditions. Thus, the aim of this study was to investigate the effects of drought in the vegetative and reproductive growth stages on yield, its components and biochemical traits in grain sorghum genotypes.
Materials and Methods
In order to evaluate the effect of water stress on grain yield and its components and some biochemical traits in grain sorghum genotypes (Sorghum bicolor L.), a field experiment as a split plot design was carried out with 3 replications in 2014 at the research farm of the southern Khorasan Agriculture and natural resources research and education center. Water stress treatments including normal irrigation (control), irrigation cut off in vegetative growth stage (emergence of terminal leaf as rolled) and irrigation cut off in generative growth stage (50% of plants in start of flowering) as the main plot and 10 genotypes of sorghum including KGS29, MGS2, Sepideh, KGFS27, MGS5, KGFS5, KGFS17, KGFS13 and KGFS30 were considered as sub plots. Each plot consists of 4 rows with a length of 6 m and row spacing of 60 cm, between plants on row was 10 cm. In addition, between each plot and the adjacent plot a row was considered to side effect reduction. To determine the yield components of each plot, half a meter in length was harvested and the number of plants, the number of panicles, grain yield, 1000 grains weight and the number of seeds per panicle were determined. To determine the yield, after removal of 2 marginal lines and a half meter of the beginning and the end of each plot, plants were harvested from the surface of 3 m2. Biochemical parameters including chlorophyll a, chlorophyll b, carotenoids, proline and carbohydrates were measured on the flag leaf after flowering stage in each plot. Flag leaves immediately wrapped in aluminum foil and transferred into liquid nitrogen tanks after separating from the plant. The samples were transferred to a freezer at -20 ° C to be measured traits on them. Measurement of the biochemical characteristics, such as chlorophyll a content, chlorophyll b, total chlorophyll a and b and carotenoid content was done according to Arnon method. Measuring the concentration of soluble carbohydrates was performed using sulfuric acid method. Measurement of free proline was done by Bates method. Sugar percentage of stem (Brix) was read by a refractometer after cutting and placement of juice out of it.
Results and Discussion
Results showed that water stress had a significant effect on grain yield, 1000 grain weight, the numbers of seed per panicle and caused to decrement of them. The performances of different genotypes varied significantly for all traits, indicating high variability among them. In case of 1000 seed weight, the interaction between water stress and genotype did not show a significant difference, however, other traits which mentioned above showed a significant difference in this aspect. Regarding the biochemical characteristics, the impact of drought in the vegetative and reproductive growth stages was different, as drought reduced the content of chlorophyll and carotenoid and increased the content of soluble sugar and free proline and stalk sugar content (Brix). In term of grain yield, genotype KGFS13 with the average yield of 5060 Kg per hectare and then genotype KGFS17 had the highest yield. Comparison of interaction between genotype and stress about carbohydrate (sugar solution) concentration of leaves indicated that genotype KGFS30 in severe drought stress, had highest level and genotype KGFS27 in normal irrigation and genotype KGS33 in medium drought stress condition commonly had the lowest carbohydrate content of leaves respectively.
Conclusions
Overall results indicate that proline and soluble carbohydrates and stem sugar content increased under drought stress and photosynthetic pigments are reduced.

Keywords


1. Ajithkumarand, P., and Panneerselvam, R. 2013. Osmolyte accumulation, photosynthetic pigment and growth of setaria italica under droght stress. Asian Pacific Journal 2: 220-224.
2. Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environment 24: 1337-1344.
3. Ali, M. A., Abbas, A., Niaz, S., Zulkiffal, M., and Ali, S. 2009. Morpho-physiological criteria for drought tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis stages. International Journal of Agricultural Biology 11: 647-680.
4. Anderson, C. M., and Kohorn, B. D. 2001. Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. Plant Physiology 158: 1215-1219.
5. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in beta vulgaris. Plant physiology 24: 1-15.
6. Bajji, M., Lutts, S., and Kinet, J. M. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf) cultivars performing differently in arid conditions. Plant Science 160: 669-681.
7. Bates, L. S., Waldern, R. P., and Teare, E. D. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39: 205-207.
8. Blum, A. 2008. Drought resistance, water use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56: 1159-1168.
9. Bohnert, H. J., Nelson, D. E., and Jensen, R. G. 1995. Adaptations to environmental stresses. Plant Cell, 1099-1111.
10. Fotovat, R., Valizadeh, M., and Toorehi, M. 2007. Association between water-use-efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. Journal of Food and Agricultural Environment 5: 225-227.
11. Gregersen, P. L., and Holm, P. B. 2007. Transcriptome analysis of senescence in the flag leaf of wheat. Plant Biotechnology 5: 192-206.
12. Hong Bo, S., Zongsuom, L., and Mingan, S. 2005. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids. Surf. Bio, 45: 7-13.
13. Hui-Ping, D., Chan-juan, Sh., An-Zhi, W., and Tuxi, Y. 2012. Leaf senescence and photosynthesis in foxtail (Setaria italica L) varieties exposed to drought conditions. Australian Journal of Crop Science 6 (2): 232-237.
14. Jagtap, V., Bhargava, S., Sterb, P., and Feierabend, J. 1998. Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. Journal of Experimental Botany 49: 1715-1721.
15. Jaleel, C., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., and Panneerselvam, R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural Biology 11: 100-105.
16. Kariola, T., Brader, G., Li, J., and Palva, E. T. 2005. A damage control enzyme, effects the balance between defense pathway in plant. The Plant Cell, 17. Pp 282-294.
17. Kirnak, H., Kaya, C., TAS, I., and Higgs, D., 2001. The influence of water deficit on vegetative growth, physiology, fruit yield and quality in egg plants. Plant Physiology 27: 34-46.
18. Kishor P. B. K., Hong, Z., Miao, G., Hu, C. A. A., and Verma, D. P. S. 1995. Overexpression of 1pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants. Plant Physiology 108: 1387-1394.
19. Kumar Parida, A., Dagaonkar, V. S., Phalak, M. S., Umalkar, G. V., Laxman, P., and Aurangabadka. 2007. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Report 1: 37-48.
20. Lata, C., Sarita, J. H., Prasad, M., and Sreenivasulu, N. 2011. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars. Protoplasma 248: 817-828.
21. Li, T. H., and Li, S. H. 2005. Leaf responses of micropopagated apple plants to water stress: nonstructural carbohydrate composition and regulatory role of metabolic enzymes. Tree Physiology, 25: 495-504
22. Liu, H. P., Dong, B. H., Zhang, Y. Y., Liu, Z. P., and Liu, Y. L. 2004. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Science 166: 1261-1267.
23. Ludlow, M. M., and Muchow, R. C. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Advance Agronomy 43: 107-153.
24. Maman, N., Mason, S. C., Lyon, D. J., and Dhungana, P. 2004. Yield Components of Pearl millet and Grain Sorghum across Environments in the Central Great Plains. Crop Science 44: 2138-2145.
25. Mohammadkhani, N., and Heidari, R. 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. W. Applied Science Journal 3 (3): 448-453.
26. Morgan, P. W. 1990. Effects of abiotic stresses on plant hormone systems, in: Stress Responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, Inc., pp. 113-146.
27. Nayyar, H., and Gupta, D. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environment. Experiment. Botany 58: 106-113.
28. Nageswara, R. R. C., Talwar, H. S., and Wright, G. C. 2001. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using chlorophyll meter. Journal of Agronomy and Crop Science 189: 175-182.
29. Nonami, H. 1998. Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research 111: 373-382.
30. Oncel, I., Keles, Y., and Ustun, A. S. 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environmental Pollution 107: 315-320.
31. Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., and Noitsakis, B. 2002. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grape vines. Plant Science 163: 361-367.
32. Pessarkli, M. 1999. Hand book of Plant and Crop Stress. Marcel Dekker Inc. 697 pp.
33. Prasad, P. V. V., Pisipati, S. R., Mutava, R. N., and Tuinstra, M. R. 2008. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science 48: 1911-1917.
34. Reddy, A. R., Ramachandra, R. K., Chaitanya, V., and Vivekanandan, M. 2004. Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189-1202.
35. Rensburg, L. V., and Kruger, G. H. J. 1994. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J. Plant Physiology 143: 730-737.
36. Saeidi, M., Moradi, F., Ahmadi, Spheri, R., Najafian, G., and Shabani, A. 2010. The effect of terminal water stress on physiological characteristics and sink-source relations in two bread wheat (triticum aestivum) cultivars. Iranian Journal of Crop Science 12 (4): 392-408. (in Persian with English abstract).
37. Sanchez, F. J., De Andres, E. F., Tenorio, J. L., and Ayerbe, L., 2003. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research 86: 81-90.
38. Sato, F., Yoshioka, H., Fujiwara, T., Higashio, H., Uragami, A., and Tokuda, S. 2004. Physiological responses of cabbages plug seedlings to water stress during low-temperature storage in darkness. Horticultureal Science 101: 349-357.
39. Schaffert, R. E., Albuquerque, P. E. P., Duarte, J. O., Garcia, J. O., Gomide, R. L., Guimar es, C. T., Magalh es, P. C., Magalh es, J. V., and Queiroz, V. A. V. 2011. Phenotyping sorghum for adaptation to drought, Part II in Monneveux P. and Ribaut JM.(Eds), Drought phenotyping in crops: from theory to practice. Generation Challenge Programme.
40. Schlegel, H. G. 1956. Die Verwertung organischer sauren durch chlorella in lincht. Planta 47: 510-515.
41. Schlemmer, M. R., Francis, D. D., Shanahan, J. F., and Schepers, J. S. 2005. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal 97: 106-112.
42. Serraj, R., and Sinclair, T. R. 2002. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environment 25: 333-341.
43. Shao, H. B., Liang, Z. S., and Shao, M. A. 2005. Change of antioxidative enzymes and MDA among 10 wheat genotypes at maturation stage under soil water deficits. Colloid. Surf. B: Biointerf 45 (2): 7-13.
44. Subbarao, G. V., Nam, N. H., Chauhan, Y. S., and Johansen, C. 2000. Osmotic adjustment, water relations and carbohydrate remobilization in pigeon pea under water deficits. Journal of Plant Physiology 157: 651-659.
45. Thomas, H. 1990. Osmotic adjustment in lolium perenne: its heritability and the nature of solute accumulation. Annals of Botany 66: 521-530.
46. Taiz, L., and Zeiger, E. 2006. Plant Physiology, 4th Ed., Sinauer Associates Inc. Publishers, Massachusetts.
47. Turner, N. C., Wright, G. C., and Siddique, K. H. M. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Advance Agronomy 71: 123-231.
48. Wright, G. C., Nageswara, R. C., and Farquhar, G. D. 1994. Water use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Science 34: 92-97.
49. Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., and Yoshiba, Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany 56: 1975-1981.
50. Yang, J., and Zang, J. 2006. Grain filling of cereals under soil drying. New Phytology 169: 223-236.
51. Zhu, J. K. 2002. Salt and drought stress signal transduction in plants, Annual Review of Plant Biology 53: 247-273.
CAPTCHA Image
Volume 15, Issue 3 - Serial Number 47
October 2017
Pages 676-690
  • Receive Date: 02 January 2016
  • Revise Date: 27 August 2016
  • Accept Date: 03 September 2016
  • First Publish Date: 23 September 2017