Agroecological Analysis of Sugar Beet Ecosystem (Beta vulgaris L.) in Torbat-e Heydarieh

Document Type : Research Article

Authors

1 PhD Student of Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran

2 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran

Abstract

Introduction
During the 1950s and 1960s, the green revolution led to a dramatic increase in global food and fodder production to eliminate hunger and boost food security. This production enhancement was accompanied by an intensified agricultural and chemical input consumption and increased cultivated area and mechanization. Although yield per unit area has improved in most crops, concerns about food security for the world's rising population are still significant. Guaranteeing food security in the future will necessitate a shift in management approaches to boost output, agroecosystem sustainability, and stability and reduce the environmental harm caused by agriculture. The first step to achieving sustainability and ecological intensification in agricultural systems is to have a comprehensive agroecological analysis of agricultural systems in each region. Hence, the complete evaluation and analysis of agroecological features according to their type in each region is necessary for establishing an optimal management technique. After analyzing the present state of each region's shared ecosystems, the optimal strategy for boosting production stability must be devised and implemented.
Materials and Methods
The goal of this study was to undertake a detailed investigation of the agroecological state of the sugar beet ecosystems on a local scale. For this purpose, data were collected on the area under cultivation, yield, and input consumption (including nitrogen and phosphorus fertilizers and chemical pesticides) from 2001 to 2016. Data was acquired from the Ministry of Agriculture and other related organizations and direct interviews with the farmers. In addition, data on climatic parameters (including daily minimum and maximum temperatures, precipitation, and sunny hours) were collected from the Torbat-e Heydariyeh meteorological station. This study researched the most important agroecological indicators of sugar beet farming systems in the Torbat-e Heydarieh region. Study indicators include variations in sugar beet cultivation area and yield, Potential yield via the methods FAO and FAO modified, beet yield gap, Regional Yield Factor trend, Changes in the intensification, yield stability, nitrogen uptake, and nitrogen utilization, and nitrogen use efficiency.
Results and Discussion
According to this study results, sugar beet production increased by 59 percent between 2001 and 2016. During the research years, sugar beet ecosystems saw a drop in the cultivation area. Potential yield calculations using both FAO and modified FAO methodologies revealed that potential yield was nearly consistent over the research period in the region.
The sugar beet yield gap averaged 35 ton.ha-1 over the research period. According to the findings, the percentage of sugar beet yield gap ranged from 53 to 69 %, with an average of 63 %. The extent of the yield gap decreased over the research period. The study of the regional yield factor (RYF) revealed that improving the management system resulted in higher actual yield and thus a smaller yield gap in sugar beet ecosystems. In sugar beet cultivation systems, the results revealed that by increasing intensification, the stability decreased. In sugar beet cultivation systems, there was a reduction in yield stability. Given that nitrogen consumption efficiency is one of the most important factors influencing the degree of stability in agricultural systems, the findings revealed that the rate of nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE), and nitrogen use efficiency (NUE) all decreased during the studied years in the region.
Conclusion
According to the findings, the major cause of the increase in nitrogen consumption, growing intensification, and decreasing stability in the analyzed systems appears to be a deficiency of nitrogen use efficiency and its downward trend. As a result, planning and altering management methods focusing on enhancing Nitrogen use efficiency may be proposed as the first step toward boosting sustainability in the Torbat-e Heydarieh sugar beet agroecosystems.

Keywords

Main Subjects


  1. Abdollahian-Noghabi, M., Sharifi, H., Babaei, B., & Bahmani, G. (2013). Introduction of new formula for determination of autumn sugar beet purchase. Journal of Sugar Beet, 29(2), 227-215. org/10.22092/JSB.2014.5635
  2. Abeledo, L. G., Savin, R., & Slafer, G. A. (2008). Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy, 28, 541-550. org/10.1016/j.eja.2007.12.001
  3. Altieri, M. A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93(3): 1-24. org/10.1016/S0167-8809(02)00085-3
  4. Andarzian, S. B. (2019). Determination of sowing time, grain yield potential, yield gap, and risk analysis of wheat production in rainfed regions of Khuzestan Province in Iran. Seed and Plant Production Journal, 35(2), 159-181. org/10.22092/SPPJ.2019.120755
  5. Badsar, M., Kamkar, B., Soltani, A., & Abdi, O. (2017). Yield gap estimation in wheat-grown fields using GIS and RS approach and SSM model (A case study: Qaresso basin, Gorgan, Iran). Cereal Research, 7(2), 195-215. org/10.22124/C.2017.2547
  6. Berry, E. M., Dernini, S., Burlingame, B., Meybeck, A., & Conforti, P. (2015). Food security and sustainability: can one exist without the other? Public Health Nutrition, 18(13), 2293-2302. org/10.1017/S136898001500021X
  7. Beckmann, M., Gerstner, K., Akin‐Fajiye, M., Ceauu, S., Kambach, S., Kinlock, N. L., Phillips, H. R., Verhagen, W., Gurevitch, J., Klotz, S., & Newbold, T. (2019). Conventional land‐use intensification reduces species richness and increases production: A global meta‐Global Change Biology, 25(6), 1941-1956. doi.org/10.1111/gcb.14606
  8. Brzozowski, L., & Mazourek, M. (2018). A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability, 10(6), 2023. org/10.3390/su10062023
  9. Bicharanloo, B., Rezvani Moghaddam, P., & Asadi, G. (2021). Does summer irrigation alter nitrogen uptake and utilisation efficiency of saffron (Crocus sativus) for different organic and chemical fertilisers? Archives of Agronomy and Soil Science, 67(13), 1754-1769. doi.org/10.1080/03650340.2020.1808200
  10. Brummer, E. C., Barber, W. T., Collier, S. M., Cox, T. S., Johnson, R., Murray, S. C., Richard T. O., Richard C. P., & Thro A. M. (2011) Plant breeding for harmony between agriculture and the environment. Frontiers in Ecology and the Environment, 9(10), 561-568. org/10.1890/100225
  11. Calderini, D. F., & Slafer, G. A. (1998). Changes in yield and yield stability in wheat during the 20thField Crops Research, 57(3), 335-347. doi.org/10.1016/S0378-4290(98)00080-X
  12. Caldiz, D. O., Gaspari, F. J., Haverkort, A. J., & Struik, P. C. (2001). Agro-ecological zoning and potential yield of single or double cropping of potato in Argentina. Agricultural and Forest Meteorology, 109, 311-320. org/10.1016/S0168-1923(01)00231-3
  13. Cassman, K. G., & Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability, 3(4), 262-268. org/10.1038/s41893-020-0507-8
  14. Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9(7-8): 685-692. org/10.1016/j.envsci.2006.08.002
  15. Clay, N., Garnett, T., & Lorimer, J. (2020). Dairy intensification: Drivers, impacts and alternatives. Ambio 49(1): 35-48. org/10.1007/s13280-019-01177-y
  16. Commission, E. (2012). Agri-Environmental Indicator- Intensification- Extensification. Belgium, EU Rural Rwview. 2014.
  17. Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126(4), 867-887. org/10.1007/s00122-013-2066-0
  18. Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021). Nitrogen use efficiency definitions of today and tomorrow. Frontiers in Plant Science, 12, 637108. https://doi.org/10.3389/fpls.2021.637108
  19. Cormier, F., Foulkes, J., Hirel, B., Gouache, D., Moënne‐Loccoz, Y., & Le Gouis, J. (2016). Breeding for increased nitrogen‐use efficiency: a review for wheat ( aestivum L.). Plant Breeding, 135(3), 255-278. doi.org/10.1111/pbr.12371
  20. Dimkpa, C. O., Fugice, J., Singh, U., & Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Science of the Total Environment, 731(13), 1-13. org/10.1016/j.scitotenv.2020.139113
  21. Dihim Fard, R., & Nazari, S. (2015). Effect of nitrogen application on quantitative and qualitative of sugar beet cultivars. Journal of Plant Production Research, 22(2), 71-93. org/100.1.1.23222050.1394.22.2.4.3
  22. FAO. (2018). FAOSTAT. Retrieved from: http://faostat.fao.org/site/567/DesktopDefault.aspx?PagelD=567#ancor
  23. FAO. (1978). Report on the Agroecological Zones Project. Vol. 1. Methodology and results for Africa. World Soil Resources Report 48/1. FAO, Rome, 158cpp. http://faostat.fao.org
  24. FAO. (1981). Report on the Agroecological Zones Project. Vol. 3. Methodology and results for South and Central America. World Soil Resources Report 48/3. FAO, Rome, 251 pp. http://faostat.fao.org
  25. Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and warming oceans threaten food security. Food Security, 1(3), 271-289. org/10.1007/s12571-009-0026-y
  26. Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley, S., & Shewry, P. R. (2009). Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 114(3), 329-342. org/10.1016/j.fcr.2009.09.005
  27. Gobbett, D. L., Hochman, Z., Horan, H., Garcia, J. N., Grassini, P., & Cassman, K. G. (2017). Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science, 155, 282-299. org/10.1017/S0021859616000381
  28. Hazell, P. B. (2010). An assessment of the impact of agricultural research in South Asia since the green revolution. Handbook of Agricultural Economics, 4, 3469-3530. org/10.1016/S1574-0072(09)04068-7
  29. Hunt, R. C. (2000). Labor productivity and agricultural development: Boserup Revisited. Human Ecology, 28, 251-277. org/10.1023/A:1007072120891
  30. Hutchings, N. J., Sorensen, P., Cordovil, C. M., Leip, A., & Amon, B. (2020). Measures to increase the nitrogen use efficiency of European agricultural production. Global Food Security, 26, 100381. org/10.1016/j.gfs.2020.100381
  31. Knapp, S., & der Heijden, V. M. G. (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 9(1), 1-9. org/10.1038/s41467-018-05956-1
  32. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. org/10.1016/j.envint.2019.105078
  33. Langholtz, M., Davison, B. H., Jager, H. I., Eaton, L., Baskaran, L. M., Davis, M., & Brandt, C. C. (2021). Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Science of the Total Environment, 758, 143602. org/10.1016/j.scitotenv.2020.143602
  34. Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179-204. org/10.1146/annurev.environ.041008.093740
  35. Ministry of Agriculture-Jahad (2001-2020) Agricultural Statistics, (Vol. 2). Islamic Republic of Iran, Ministry of Agriculture-Jahad, Press.
  36. Moll, R. H., Kamprath, E. J., & Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 74, 562e564. org/10.2134/agronj1982.00021962007400030037x
  37. Nassiri mahalati, M., & Koocheki, A. (2018). Yield monitoring for wheat and sugar beet in Khorasan Province: 1- Analysis of Methods for Estimating Potential Yield. Iranian Journal of Field Crops Research, 16(4), 723-741. org /10.22067/gsc.v17i1.62557
  38. Nassiri mahalati, M., Koocheki, A. (2014). Long term evaluation of yield stability trend for cereal crops in Iran. Journal of Agroecology, 6(3), 607-621. org /10.22067/JAG.V6I3.26802
  39. Nassiri mahalati, M., & Koocheki, A. (2017). Trend analysis of nitrogen use and productivity in wheat (Triticum aestivum) production systems of Iran. Journal of Agroecology, 9(2), 360-378. doi.org/10.22067/JAG.V9I2.29287
  40. Neumann, K., Verberg, P. H., Stehfest, E., & Muller, C. (2010). The yield gap of global grain production: a spatial analysis. Agricultural Systems, 103, 316-326. org/10.1016/j.agsy.2010.02.004
  41. Nielsen, D. C., & Vigil, M. F. (2018). Wheat yield and yield stability of eight dryland crop rotations. Agronomy Journal, 110(2), 594-601. org/10.2134/agronj2017.07.0407
  42. Nikoei, A., Bagheri, A., Soleimanipor, I., Shirvanian, A., Zare, Sh., Nemati, A., & Ebrahimian, H. (2007). Survey of sugar beet employment rate in Iran. Journal of Sugar Beet, 23(1), 93-108. org/10.22092/JSB.2007.1255
  43. Palmer, C. (2008). Environmental Ethics and Agricultural Intensification. In: Thompson P.B. (eds) The Ethics of Intensification. The International Library of Environmental, Agricultural and Food Ethics, 16, 131-148. Springer, Dordrecht. org/10.1007/978-1-4020-8722-6_9
  44. Pellegrini, P., & Fernández, R. J. (2018). Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proceedings of the National Academy of Sciences, 115(10), 2335-2340. org/10.1073/pnas.1717072115
  45. Pittelkow, C. M., Zorrilla, G., Terra, J., Riccetto, S., Macedo, I., Bonilla, C., & Roel, A. (2016). Sustainability of rice intensification in Uruguay from 1993 to 2013. Global Food Security, 9, 10-18. org/10.1016/j.gfs.2016.05.003
  46. Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1), 1-9. org/10.1038/ncomms6989
  47. Sanghera, G. S., Singh, R. P., Kashyap, L., Tyagi, V., & Sharma, B. (2016). Evaluation of sugarbeet genotypes (Beta Vulgaris) for root yield and quality traits under subtropical conditions. Journal of Krishi Vigyan, 5(1), 67-73. doi.org/10.5958/2349-4433.2016.00037.4
  48. Senapati, N., & Semenov, M. A. (2020). Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Global Food Security, 24, 100340. org/10.1016/j.gfs.2019.100340
  49. Sharma, L. K., & Bali, S. K. (2017). A review of methods to improve nitrogen use efficiency in agriculture. Sustainability, 10(1), 1-23. org/10.3390/su10010051
  50. Thomson, A. M., Ellis, E. C., Grau, H. R., Kuemmerle, T., Meyfroidt, P., Ramankutty, N., & Zeleke, G. (2019). Sustainable intensification in land systems: trade-offs, scales, and contexts. Current Opinion in Environmental Sustainability, 38, 37-43. org/10.1016/j.cosust.2019.04.011
  51. United Nations, Department of Economic and Social Affairs, Population Division. (2019). World Population Prospects 2019 - Special Aggregates, Online Edition. Rev. 1. https://population.un.org/wpp2019/Download/SpecialAggregates/EconomicTrading/
  52. Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agronomy for Sustainable Development, 36(1), 15-32. org/10.1007/s13593-015-0347-5
  53. Van Bueren, E. T. L., & Struik, P. C. (2017). Diverse concepts of breeding for nitrogen use efficiency. A review. Agronomy for Sustainable Development, 37(5), 1-24. org/10.1007/s13593-017-0457-3
  54. Versteeg, M. N., & Van Keulen, H. (1986). Potential crop production prediction by some simple calculation methods, as compared with computer simulations. Agricultural Systems, 19(4), 249-272. org/10.1016/0308-521X(86)90109-5
  55. Wallace, A. J., Armstrong, R. D., Grace, P. R., Scheer, C., & Partington, D. L. (2020). Nitrogen use efficiency of 15 N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosystems, 116(1), 41-56. org/10.1007/s10705-019-10028-x
  56. Wu, P., Liu, F., Li, H., Cai, T., Zhang, P., & Jia, Z. (2021). Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Science of The Total Environment, 781, 146787. org/10.1016/j.scitotenv.2021.146787
  57. Wilson, J. S., & Otsuki, T. (2004). To spray or not to spray: pesticides, banana exports, and food safety. Food Policy, 29(2), 131-146. org/10.1016/j.foodpol.2004.02.003
  58. Yang, H., Mo, P., Chen, Y., Chen, R., Wei, T., Xie, W., Xiang, X., Huang, X., Zheng, T., & Fan, G. (2021). Genetic progress in grain yield radiation and nitrogen use efficiency of dryland winter wheat in Southwest China since 1965: Progress and prospect for improvements. Crop Science, 61(6), 4255-4272. org/10.1002/csc2.20608
  59. Zhang, Z., Zhang, Y., Shi, Y., & Yu, Z. (2020). Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation. Scientific Reports, 10(1), 1-14. org/10.1038/s41598-020-75388-9
CAPTCHA Image
Volume 20, Issue 4 - Serial Number 68
January 2023
Pages 417-434
  • Receive Date: 01 February 2022
  • Revise Date: 12 April 2022
  • Accept Date: 16 April 2022
  • First Publish Date: 16 April 2022