24-Epibrasinolid and Cauliflower (Brassica oleracea var. botrytis) Extract Effect on Grain Yield and Some Morphophysiologycal Characteristics of the Sensitive and Tolerant Quinoa (Chenopodium quinoa Willd.) Cultivars

Document Type : Research Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, University of Urmia, Urmia, Iran

2 Department of Microbiology and Medical Engineering, Faculty of Agriculture, Afagh Higher Education Institute, Urmia, Iran

3 Department of Agronomy and Plant Breeding, Islamic Azad University Mahabad Branch. Mahabad, Iran

Abstract

Introduction
Recent alterations in climate patterns have resulted in a reduction of precipitation. This shift not only contributes to drought conditions but also increases the salinity levels of both water and soil utilized for agricultural purposes. To mitigate the impact of this phenomenon on food security, it is essential to consider strategies that involve the utilization of alternative plants and compounds, such as Brassinosteroids (BRs), which can enhance the resilience of plant products to salinity stress. Quinoa (Chenopodium quinoa Willd.) is a plant with high production potential, which can be used as a good candidate to replace salt-sensitive cereal due to its richness in nutrients needed by humans and livestock. Due to the consecutive droughts in the Iran and as a result the lack of water resources and then the salinity of water and soil resources, the production of some traditional agricultural and horticultural plants has faced many limitations. This has caused a decrease in the quantity and quality of agricultural products in these regions. In the meantime, the drying up of Lake Urmia, which was considered the largest salt lake in the world, has faced additional tension in West Azerbaijan province. For this reason, the introduction of planting pattern of new plants with high yield potential, which have good agricultural performance in dry and salty conditions, and the production product, is of high quality is on the agenda.
Materials and Methods
In order to investigate the effect of 24-epibrassinolide and cauliflower (Brassica oleracea var. botrytis) extract on some biochemical characteristics and related to the forage quality of Quinoa cultivars at salinity levels, a factorial experiment in the form of a completely randomized design (CRD) with four replications in the greenhouse of the Faculty of Agriculture of Azad University of Mahabad in the spring and summer of the year 1401 was done. The investigated factors included the tolerant (Titikaka) and semi-sensitive (Sajma) Quinoa cultivars to salinity, the use of stress-modulating substances (at three levels, without application, application of 24-epibrasinolide and application of cauliflower extract), and the salinity levels (2 levels, without salinity and 15 dS m-1) of irrigation water. After sampling, morphological, biochemical and fodder quality characteristics were measured.
Results and Discussion
The results showed that spraying with 24-epibrassinolide and cauliflower extract increased total chlorophyll, carotenoid, relative content of leaf water, proline, phenol, soluble carbohydrates, and forage quality characteristics (digestible dry matter, crude protein, ash, water-soluble carbohydrates), and decreased hydrogen peroxide (H2O2) and negative attributes associated with forage quality (insoluble fibers in acid detergent, insoluble fiber in neutral detergent and fiber). The use of two anti-stress solutions, especially 24-epibrassinolide, significantly improved oxidative damage caused by salinity stress by reducing hydrogen peroxide and increasing the activity of non-enzymatic antioxidants.
Conclusion
In this study, morphological characteristics (root length, plant height and dry weights of roots, shoots and seeds), total chlorophyll, carotenoid, relative content of leaf water and digestible dry matter of forage decreased under salt stress. While the amount of proline, phenol, soluble carbohydrates, hydrogen peroxide and characteristics related to forage quality (crude protein, insoluble fibers in acidic detergent, insoluble fibers in neutral detergent, percentage of ash, water-soluble carbohydrates and crude fiber) increased. Foliar application of 24-epibrassinolide and cauliflower extract enhanced morphological traits, total chlorophyll, carotenoids, relative leaf water content, proline, phenols, and leaf soluble carbohydrates. It also improved forage quality by increasing the percentage of digestible dry matter, crude protein, ash content, and water-soluble carbohydrates, while reducing hydrogen peroxide levels and undesirable forage quality traits such as acid detergent fiber (ADF), neutral detergent fiber (NDF), and overall fiber content. According to the results, the use of two anti-stress solutions, especially 24-epibrasinolide, significantly improved the oxidative damage caused by salt stress by reducing hydrogen peroxide and increasing the activity of non-enzymatic antioxidants. Titikaka was more resistant to the negative effects of salinity stress on morphological and biochemical characteristics than Sajma, and Sajma under foliar spraying of cauliflower extract and Titikaka under foliar spraying of 24-epibrassinolide showed a better response to saline conditions. Therefore, in order to improve the growth and quality of fodder and reduce the negative effects of salinity stress, foliar spraying with 24-epibrassinolide and cauliflower extract can be recommended in both Titikaka and Sajma cultivars.
.

Keywords

Main Subjects


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdellatif, A. S. A. (2018). Chemical and technological evaluation of quinoa (Chenopodium quinoa) cultivated in Egypt. Acta Scientific Nutritional Health, 2, 42-53.
  2. Ahmad, P., Abass Ahanger, M., Nasser Alyemeni, M., Wijaya, L., Alam, P., & Ashraf, M. (2018). Mitigation of sodium chloride toxicity in Solanum lycopersicum by supplementation of jasmonic acid and nitric oxide. Journal of Plant Interactions, 13(1), 64-72. https://doi.org/10.1080/17429145.2017.1420830
  3. Akbari, M., Toorchi, M., & Shakiba, M. R. (2016). The effects of sodium chloride stress on proline content and morphological characteristics in wheat (Triticum aestivum). Biological Forum, 8(1), 379-385.
  4. Alan, B. (2011). Quinoa an ancient crop to contribute to world food security. 37th FAO Conference.
  5. Albaladejo, I., Egea, I., Morales, B., Flores, F. B., Capel, C., & Lozano, R. (2018). Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery inducedby salt stress through transcriptomic analysis. BMC Plant Biology, 18(1), 1-19. https://doi.org/10.1186/s12870-018-1436-9
  6. AOAC. (1999). In: P. Cunnif (Ed.). Official methods of analysis of the association of officialanalytical chemist’s 16th AOAC International Gaithersburg MD USA.
  7. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  8. Bates, L. S., Waldren. R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
  9. Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa - An Indian perspective. Industrial Crops and Products, 23(1), 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
  10. Buxton, D. R., & Brasche, M. R. (1991). Digestibility of structural carbohydrates in cool‐season grass and legume forages. Crop Science, 31(5), 1338-1345.
  11. Cheraghi, M., Hatamnia. A. A. & Ghanbari, F. (2023). Effects of salinity stress on calendula (Calendula officinalis) by exogenous application of melatonin. Plant Process and Function, 12(54), 21-37. (in Persian with English abstract)
  12. Chien, S. W. C., Liao, J. H., Wang, M. C., & Mannepalli, M. R. (2009). Effect of Cl, SO42− and fulvate anions on Cd2+ free ion concentrations in simulated rhizosphere soil solutions. Journal of Hazardous Materials, 172(2-3), 809-817. https://doi.org/10.1016/j.jhazmat.2009.07.076
  13. Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. https://doi.org/10.1016/j.plantsci.2004.07.039
  14. de Oliveira, V. P., Lima. M. D. R., da Silva, B. R. S., Batista, B. L., & da Silva Lobato, A. K. (2019). Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis antioxidant metabolism and leaf anatomy. Journal of Plant Growth Regulation, 38, 557-573. https://doi.org/10.1007/s00344-018-9870-3
  15. Deyantitilki, G. A., Salehi, S., & Sadati, E. (2015). Effect of salinity stress (Na2SO4) on forage quality of Medicago polymorpha and Medicago scutelata. Watershed Management Researches (Pajouhesh-va-Sazandegi), 28(107), 57-65.
  16. FAO. (2024). https://www.fao.org/faostat/en/#data/QCL
  17. Farzi-Aminabad, R., Nasrollah Zadeh, S., & Ghassemi-Golezani, K. (2021). Response of sunflower in water deficit and foliar application of putrescine and 24-epibrassinolide. Journal of Agricultural Science and Sustainable Production31(2), 289-302. (in Persian with English abstract). https://doi.org/10.22034/saps.2021.13110
  18. Ferreira, J. F., Cornacchione, M. V., Liu, X., & Suarez, D. L. (2015). Nutrient composition forage parameters and antioxidant capacity of alfalfa (Medicago sativa) in response to saline irrigation water. Agriculture5(3), 577-597. https://doi.org/10.3390/agriculture5030577
  19. Firoozeh, R., Khavarinejad, R., Najafi, F., & Saadatmand, S. (2019). Effects of gibberellin on contents of photosynthetic pigments proline phenol and flavonoid in savory plants (Satureja hortensis) under salt stress. Journal of Plant Research (Iranian Journal of Biology)31(4), 894-908. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23832592.1397.31.4.12.4
  20. Fisher, D. S., & Burns, J. C. (1987). Quality analysis of summer‐annual forages. II. Effects of forage carbohydrate constituents on silage fermentation 1. Agronomy Journal, 79(2), 242-248. https://doi.org/10.2134/agronj1987.00021962007900020014x
  21. Foti, C., Khah, E. M., & Pavli, O. I. (2019). Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 21(3), 480-486. https://doi.org/10.1111/plb.12714
  22. Ghasemi, M., Jahanbin, S., Latifmanesh, H., Farajee, H., & Mirshekari, A. (2021). Effect of brassinolide foliar application on some physiological and agronomic characteristics of sunflower (Helianthus annuus) under drought stress conditions. Journal of Crop Production, 14(1), 31-48. (in Persian with English abstract). https://doi.org/10.22069/ejcp.2021.18084.2339
  23. Humphreys, M. O. (1999). Water-soluble carbihydradrates in perennial ryegrass breeding. Grass Forage Science, 44, 423-430. https://doi.org/10.1111/j.1365-2494.1989.tb01932.x
  24. Ismail, A. M., & Horie, T. (2017). Genomics physiology and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68, 405-434. https://doi.org/10.1146/annurev-arplant-042916-040936
  25. Julkowska, M. M., Koevoets, I. T., Mol, S., Hoefsloot, H., Feron, R., & Tester, M. A. (2017). Genetic components of root architecture remodeling in response to saltstress. The Plant Cell, 29(12), 3198–3213. https://doi.org/10.1105/tpc.16.00680
  26. Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225(2), 353-364. https://doi.org/10.1007/s00425-006-0361-6
  27. Kaymakanova, M., & Stoeva, N. (2008). Physiological reaction of bean plants (Phaseolus vulgaris) to salt stress. General and Applied Plant Physiology, 34, 177-188.
  28. Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
  29. Lopez-Gomez, M., Hidalgo-Castellanos, J., Lluch, C., & Herrera-Cervera, J. A. (2016). 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiology and Biochemistry, 108, 212-221. https://doi.org/10.1016/j.plaphy.2016.07.017
  30. Maia Júnior, S. D. O., Andrade, J. R. D., Nascimento, R. D., Lima, R. F. D., Bezerra, C. V. D. C., & Ferreira, V. M. (2022). Brassinosteroid application increases tomato tolerance to salinity by changing the effects of stress on membrane integrity and gas exchange. Acta Scientiarum Agronomy, 44, 1-12. https://doi.org/10.4025/actasciagron.v44i1.55647
  31. Masters, D., Tiong, M., Vercoe, P., & Norman, H. (2010). The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Ruminant Research, 91(1), 56-62. https://doi.org/10.1016/j.smallrumres.2009.10.019
  32. Mc Donald, P., Edwards, R. A., Greanhalgh, J. F. D., & Morgan, C. A. (1995). Animal Nutrition. Addison Wesley Longman Inc. UK. ISE reprint. 607.
  33. Melchiorre, M., Quero, G. E., Parola, R., Racca, R., Trippi, V. S. & Lascano, R. (2009). Physiological characterization of four model Lotus diploid genotypes: japonicus (MG20 and Gifu) L. filicaulis and L. burttii under salt stress. Plant Science, 177(6), 618-628. https://doi.org/10.1016/j.plantsci.2009.09.010
  34. Mezni, M., Albouchi, A., Bizid, E., & Hamza, M. (2010). Minerals uptake organic osmotica contents and water balance in alfalfa under salt stress. Journal of Phytology, 2(11), 1-12.
  35. Mohammadi Khalifelouiy, Z., Abbasifar, A. R., Khadivi, A., & Akramian, M. (2020). The effect of proline and 24-epibrassinolide on growth indices and biochemical characteristics of the summer savory (Satureja hortensis). Journal of Plant Research (Iranian Journal of Biology), 32(4), 925-940. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23832592.1398.32.4.10.9
  36. Oliveira Neto, C. F. D., Lobato, A. K. D. S., Gonçalves-Vidigal, M. C., Costa, R. C. L. D., Santos Filho, B. G. D., Alves, G. A. R., & Lopes, M. S. (2009). Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Journal of Food Agriculture & Environment, 7(3,4), 588-593.
  37. Otie, V., Udo, I., Shao, Y., Itam, M. O., Okamoto, H., An, P., & Eneji, E. A. (2021). Salinity effects on morpho-physiological and yield traits of soybean (Glycine max) as mediated by foliar spray with brassinolide. Plants, 10(3), 541. https://doi.org/10.3390/plants10030541
  38. Ouji, A., El-Bok, S., Mouelhi, M., Younes, M. B., & Kharrat, M. (2015). Effect of salinity stress on germination of five Tunisian lentil (Lens culinaris ) genotypes. European Scientific Journal, 11(21), 63-75.
  39. Panda, D., Ghosh, D. C., & Kar, M. (2013). Effect of salt stress on the pigment content and yield of different rice (Oryza sativa) genotypes. InternationalJournal of Bio-resource and Stress Management, 4(3), 431-434.
  40. Parvin, K., Hasanuzzaman, M., Bhuyan, M. B., Mohsin, S. M., & Fujita, M. (2019). Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants, 8(8), 247. https://doi.org/10.3390/plants8080247
  41. Pavli, O. I., Foti, C., Skoufogianni, G., Karastergiou, G., & Panagou, A. (2021). Effect of salinity on seed germination and seedling development of soybean genotypes. International Journal of Environmental Sciences and Natural Resources, 27(2), 556210. https://doi.org/10.19080/IJESNR.2021.27.556210
  42. Pourasadollahi, A., Siosemardeh, A., Hosseinpanahi, F., & Sohrabi, Y. (2020). Effect of spraying of growth regulators on water use efficiency some osmolites and physiological traits of potato in drought stress conditions. Plant Process and Function, 9(35), 329-345. (in Persian with English abstract)
  43. Pulvento, C., Jacobsen, S. E., Alandia, G., Prins, U., Andria, R., Sellami, M. H., Grimberg, A., Carlsson, A. S., Capannini, S., & Lavini, A. (2016). Evaluation of quinoa adaptability under European conditions to enhance high quality food protein production. In Proceedings of the Quinoa for Future Food and Nutrition Security in Marginal Environments Conference Dubai United ArabEmirates. 28.
  44. Qiu, Y., Wang, Y., Fan, Y., Hao, X., Li, S., & Kang, S. (2023). Root yield and quality of alfalfa affected by soil salinity in northwest China. Agriculture, 13(4), 750. https://doi.org/10.3390/agriculture13040750
  45. Rady, M. M. (2011). Effect of 24-epibrassinolide on growth yield antioxidant system and cadmium content of bean (Phaseolus vulgaris) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2), 232-237. https://doi.org/10.1016/j.scienta.2011.03.035
  46. Ramaswamy, A., & Seeta, R. R. S. (2018). Effect of salinity stress on seedling growth of sunflower (Helianthus annuus) genotypes. International Journal of Biology Research, 3(1), 70-75.
  47. Ruiz, K. B. S., Biondi, R., Oses, I. S., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Molina-Montenegro, M. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., & Bazile, D. (2014). Quinoa biodiversity and sustainabilityfor food security under climate change. A review. Agronomy for Sustainable Development, 34, 349-359. https://doi.org/10.1007/s13593-013-0195-0
  48. Sasse, J. M. (2003). Physiological actions of brassinosteroids: An update. Journal of Plant Growth Regulation, 22(4), 276-288. https://doi.org/10.1007/s00344-003-0062-3
  49. Shamon, M. S., El-Awadi, M. E., Gergis, M. D., & El-Rorkiek, G. A. (2020). Physiological role of brassinosteroids and cauliflower extract on quinoa plant grown under sandy soil. Asian Journal of Applied Sciences, 13(2), 68-75. https://doi.org/10.3923/ajaps.2020.68.75
  50. Shin, Y. K., Bhandari, S. R., Cho, M. C., & Lee, J. G. (2020). Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture Environment and Biotechnology, 61, 433-443. https://doi.org/10.1007/s13580-020-00231-z
  51. Singh, M., Singh, V. P., & Prasad, S. M. (2019). Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiology and Biochemistry, 141, 466-476. https://doi.org/10.1016/j.plaphy.2019.04.004
  52. Su, Q., Zheng, X., Tian, Y., & Wang, C. (2020). Exogenous brassinolide alleviates salt stress in Malus hupehensis by regulating the transcription of NHX-Type Na+(K+)/H+ antiporters. Frontiers in Plant Science, 11(38), 1-13. https://doi.org/10.3389/fpls.2020.00038
  53. Suyama, H., Benes, S. E., Robinson, P. H., Grattan, S. R., Grieve, C., & Mand Getachew, G. (2007). Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agricultural Water Management, 88(1-3), 159-172. https://doi.org/10.1016/j.agwat.2006.10.011
  54. Swamy, K., Rao, N. S., & Ram, S. (2010). Effect of brassinosteroids on rooting and early vegetative growth of Coleus [Plectranthus forskohlii (Willd.) Briq.] stem cuttings. Indian Journal of Natural Products Resources, 1(1), 68-73.
  55. Tavoosi, M., Anafjeh, Z., & Mahdavi Majd, J. (2021). Effect of different salinity levels on germination indices of 20 new quinoa genotypes. Environmental Stresses in Crop Sciences, 14(3), 837-847. https://doi.org/10.22077/escs.2020.2987.1772
  56. Tawaha, K., Alali, F. Q., Gharaibeh, M., Mohammad, M., & El-Elimat, T. (2007). Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chemistry, 104(4), 1372-1378. https://doi.org/10.1016/j.foodchem.2007.01.064
  57. Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl‐transport contributing to salt tolerance. Plant Cell and Environment, 33(4), 566-589. https://doi.org/10.1111/j.1365-3040.2009.02060.x
  58. Tokas, J., Punia, H., Malik, A., Sangwan, S., Devi, S., & Malik, S. (2021). Growth performance nutritional status forage yield and photosynthetic use efficiency of sorghum [Sorghum bicolor (L.) Moench] under salt stress. Range Management and Agroforestry, 42(1), 59-70.
  59. Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, 339-366. https://doi.org/10.1007/BF02180062
  60. Vardhini, B. V. (2012). Application of brassinolide mitigates saline stress of certain metabolites of sorghum grown in Karaikal. Journal of Phytology, 4(2). 1-4.
  61. Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 1-10. https://doi.org/10.1186/s12870-016-0771-y
  62. Wani, A. S., Tahir, I., Ahmad, S. S., Dar, R. A., & Nisar, S. (2017). Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Scientia Horticulturae, 225, 48-55. https://doi.org/10.1016/j.scienta.2017.06.063
  63. Wu, W., Zhang, Q., Ervin, E. H., Yang, Z., & Zhang, X. (2017). Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8, 1017, 1-11. https://doi.org/10.3389/fpls.2017.01017
  64. Wu, X. X., Ding, H. D., Zhu, Z. W., Yang, S. J., & Zha, D. S. (2012). Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena) seedlings under salt stress. African Journal of Biotechnology, 11(35), 8665-8671. http://doi.org/10.5897/AJB11.3416
  65. Xue-feng LIN, L. X., Hong-tao XIE, X. H., Mu-kui Yu, Y. M., & Shun-Wei Chen, C. S. (2018). Morphological and physiological response and salt-tolerance differences of three coastal plants under salt stress. Forest Research, Beijing, 31(3), 95-103.
  66. Yang, A. J., Anjum, S. A., Wang, L., Song, J. X., Zong, X. F., Lv, J., & Wang, S. G. (2018). Effect of foliar application of brassinolide on photosynthesis and chlorophyll fluorescence traits of Leymus chinensis under varying levels of shade. Photosynthetica, 56, 873-883. https://doi.org/10.1007/s11099-017-0742-z
  67. Yusuf, M., Fariduddin, Q., Khan, T. A., & Hayat, S. (2017). Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 112, 391-398. https://doi.org/10.1016/j.sajb.2017.06.034
  68. Zahedi, S. M., Asgarian, Z. S., Gholami, R., & Karami, F. (2019). Effect of 24- epibrassinolide foliar application on the “Camarosa” strawberry plant growth and fruit yield under salinity stress condition in soilless culture. Journal of Plant Production Research,26(1), 169-183. (in Persian with English abstract). https://doi.org/10.22069/jopp.2019.14493.2300
  69. Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integratingplant responses to droughtandsaltstresses. Field Crops Research, 97(1), 111-119. https://doi.org/10.1016/j.fcr.2005.08.018
  70. Zhang,, & Dai, W. (2019). Plant response to salinity stress. In Stress, Physiology of Woody Plants. 155-173. CRC Press. https://doi.org/10.1201/9780429190476
  71. Zheng, Q., Liu, J., Liu, R., Wu, H., Jiang, C., Wang, C., & Guan, Y. (2016). Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant and Soil, 400, 147-164. https://doi.org/10.1007/s11104-015-2712-1
CAPTCHA Image
  • Receive Date: 07 July 2024
  • Revise Date: 11 September 2024
  • Accept Date: 15 September 2024
  • First Publish Date: 11 March 2025