کاربرد مفهوم زمان‌گرمایی جهت مدل‌سازی پاسخ جوانه‌زنی کلزا (Brassica napus L.) به دما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خوزستان

چکیده

مدل‌های مبتنی بر مفهوم زمان‌گرمایی ابزار مفیدی برای توصیف و پیش‌بینی جوانه‌زنی و رهایی بذر از خواب در رابطه با زمان و دما هستند. هدف از این مطالعه ارزیابی دقت پیش‌بینی رهیافت‌های مختلف زمان‌گرمایی در توصیف جوانه‌زنی سه رقم بهاره کلزا (ساری‌گل، دلگان و RGS003) بود. آزمون جوانه‌زنی برای هر رقم در 11 دمای ثابت 8، 12، 16، 20، 24، 28، 32، 33، 34، 35 و 36 درجه سانتی‌گراد و چهار تکرار انجام شد و کل آزمایش سه مرتبه تکرار گردید. معیارهای نکویی برازش (RMSE و AICc) نشان داد که وقتی Tb (دمای پایه) و θTm (زمان‌گرمایی لازم برای تکمیل جوانه‌زنی در دماهای بیش‌بهینه) برای کل جمعیت بذری ثابت فرض شد و توزیع نرمال برای توصیف تنوع θT(g) (زمان‌گرمایی لازم برای تکمیل جوانه‌زنی هر کسر بذری معین در دماهای زیر بهینه) در دماهای زیر بهینه و Tm(g) (دمای بیشینه برای هر کسر بذری معین) در دماهای بیش‌بهینه به‌کار رفت، مدل برازش بهتر و دقیق‌تری از دوره‌های زمانی جوانه‌زنی هر سه رقم کلزا داشت. Tb برای ارقام ساری‌گل، دلگان و RGS003 به‌ترتیب 66/5، 13/7 و 86/5 درجه سانتی‌گراد برآورد شد. برآورد θTm برای ارقام مختلف بین 62/31 تا 55/34 درجه سانتی‌گراد ساعت متغیر بود. در رقم ساری‌گل θT(50) و Tm(50) به‌ترتیب 27/369 درجه سانتی‌گراد ساعت و 32/34 درجه سانتی‌گراد، در رقم دلگان به‌ترتیب 76/378 درجه سانتی‌گراد ساعت و 98/33 درجه سانتی‌گراد و در رقم RGS003 به‌ترتیب 89/357 درجه سانتی‌گراد ساعت و 42/34 درجه سانتی‌گراد پیش‌بینی شد. دمای بهینه برای درصدهای مختلف جوانه‌زنی (To(g)) ثابت نبود. To(50) برای ارقام ساری‌گل، دلگان و RGS003 به‌ترتیب 85/31، 78/31 و 06/32 درجه سانتی‌گراد تعیین شد.

کلیدواژه‌ها


1. Alvarado, V., and Bradford, K. J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25 (8): 1061-1069.
2. Baskin, C. C., and Baskin, J. M. 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press.
3. Bradford, K. J. 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50 (2): 248-260.
4. Burnham, K. P., and Anderson, D. R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, USA.
5. Chantre, G. R., Batlla, D., Sabbatini, M. R., and Orioli, G. 2009. Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany 103 (8): 1291-1301.
6. Covell, S., Ellis, R. H., Roberts, E. H., and Summerfield, R. J. 1986.The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany 37 (5): 705-715.
7. Ellis, R. H., Covell, S., Roberts, E. H., and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany 37 (10): 1503-1515.
8. Forcella, F., Benech-Arnold, R. L., Sanchez, R., and Ghersa, C. M. 2000.Modelling seedling emergence. Field Crops Research 67 (2): 123-139.
9. Garcia-Huidobro, J., Monteith, J. L., and Squire, G. R. 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). I. Constant temperature. Journal of Experimental Botany 33 (2): 288-296.
10. Hardegree, S.P. 2006. Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany 98 (4): 827-834.
11. Hardegree, S. P., and Van Vactor, S. S. 2000.Germination and emergence of primed grass seeds under field and simulated-field temperature regimes. Annals of Botany 85 (3): 379-390.
12. Huo, H., and Bradford, K. J. 2015. Molecular and hormonal regulation of thermoinhibition of seed germination. PP 3-33 in J.V. Anderson ed. Advances in Plant Dormancy. Springer International Publishing Switzerland.
13. Jafari, N., Esfahani, M., and Sabouri, A. 2012. Assessment of non-linear regression models to evaluate response of seedling emergence rate to temperature in three oil seed rape seed cultivars. Iranian Journal of Field Crop Science 42 (4): 857-868. (in Persian with English abstract).
14. Mesgaran, M. B., Rahimian Mashhadi, H. R., Alizadeh, H., Ohadi, S., and Zare, A. 2014. Modeling the germination responses of wild barley (Hordeum spontaneum) and littleseed cannary grass (Phalaris minor) to temperature. Iranian Journal of Weed Science 9 (2): 105-118. (in Persian with English abstract).
15. Nascimento, W. M., Huber, D. J., and Cantliffe, D. J. 2013. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. Seed Science and Technology 41 (1): 164-169.
16. Qiu, J., Bai, Y., Coulman, B., and Romo, J. T. 2006. Using thermal time models to predict seedling emergence of orchardgrass (Dactylis glomerata L.) under alternating temperature regimes. Seed Science Research 16 (4): 261-271.
17. Soltani, A., and Sinclair T. R. 2011. A simple model for chickpea development growth and yield. Field Crops Research 124 (2): 252-260.
18. Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M., and Sarparast, R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology 138 (1-4): 156-167.
19. Steadman, K. J. 2004. Dormancy release during hydrated storage in Lolium rigidum seeds is dependent on temperature, light quality, and hydration status. Journal of Experimental Botany 55 (398): 929-937.
20. Wang, R., Bai, Y., and Tanino, K. 2004. Effect of seed size and sub-zero imbibitions temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany 51 (3): 183-197.
21. Zhang, H., McGill, C. R., Irving, L. J., Kemp, P. D., and Zhou, D. 2012. A modified thermal time model to predict germination rate of ryegrass and tall fescue at constant temperatures. Crop Science 53 (1): 240-249.