اثر محلول‌پاشی متانول بر عملکرد و اجزای عملکرد دو رقم کلزا (Brassica napus L.) در شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه ملایر

2 دانشگاه صنعتی خاتم‌النبیاء

چکیده

کمبود آب یکی از عوامل اصلی محدودکننده‌ی رشد و تولید گیاهان زراعی در مناطق خشک محسوب می‌شود. شواهد متعددی در زمینه اثر مثبت متانول بر خصوصیات رشدی گیاهان سه کربنه در شرایط تنش خشکی وجود دارد. به‌منظور بررسی اثر محلول‌پاشی متانول بر صفات مورفولوژیک و عملکرد دو رقم کلزا در شرایط دیم، آزمایشی مزرعه‌ای به‌صورت کرت‌های خرد شده و در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در سال زراعی 95-1394 در شهرستان لالی استان خوزستان اجرا شد. تیمارهای آزمایشی شامل دو رقم کلزا (هایولا 401 و دلگان) و چهار سطح محلول‌پاشی متانول (شاهد، 5، 10 و 15 درصد حجمی) بودند. هم‌زمان با مرحله ساقه رفتن محلول‌پاشی در دو نوبت و با فاصله 10 روز روی قسمت‌های هوایی بوته‌های کلزا انجام شد. بر اساس نتایج اثر تیمار محلول‌پاشی متانول و همچنین اثر رقم بر ارتفاع بوته کلزا، تعداد شاخه جانبی، تعداد دانه در خورجین معنی‌دار بود. رقم هایولا 401 از نظر کلیه صفات مورد بررسی به غیر از وزن هزار دانه نسبت به رقم دلگان برتری داشت. بیشترین تعداد خورجین در گیاه، تعداد دانه در خورجین، وزن هزار دانه، ارتفاع بوته و تعداد شاخه جانبی در تیمار محلول‌پاشی متانول با غلظت 10 درصد مشاهده شد که به‌ترتیب 8، 8، 12، 19 و 28 درصد بیشتر از تیمار شاهد بود. برهمکنش تیمارهای آزمایشی بر عملکرد دانه کلزا، عملکرد زیستی و شاخص برداشت دانه در سطح یک درصد معنی‌دار بود. بیشترین عملکرد دانه کلزا (1114 کیلوگرم در هکتار) در رقم هایولا 401 و در شرایط محلول‌پاشی متانول با غلظت 10 درصد حجمی مشاهده شد و کمترین عملکرد دانه (785 کیلوگرم در هکتار) در رقم دلگان و در تیمار شاهد مشاهده شد. محلول‌پاشی متانول در هر دو رقم باعث افزایش عملکرد و اجزای عملکرد شد، با این‌حال بیشترین اثرات مثبت در تیمار محلول‌پاشی با غلظت 10 درصد مشاهده شد و در غلظت بالاتر به دلیل اثرات سمیت احتمالی تا حدودی از اثرات مثبت محلول‌پاشی متانول کاسته شد.

کلیدواژه‌ها


1. Abanda-Nkpwatt, D., Müsch, M., Tschiersch, J., Boettner, M., and Schwab, W. 2006. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. Journal of Experimental Botany 57 (15): 4025-4032.
2. Aslani, A., Vishekaei, M. N. S., Farzi, M., Niyaki, S. A. N., and Paskiabi, M. J. 2011. Effects of foliar application of methanol on growth and yield of mungbean (Vigna radiata L.) in Rasht, Iran. African Journal of Agricultural Research 6 (15): 3603-3608.
3. Emartpardaz, J., Hami, A., and Kazemnia, H. 2015. Effect of foliar application of methanol in water stress condition on yield components of Phaseolus vulgaris L. Agricultural Science and Sustainable Production Science 25: 125-137. (in Persian with English abstract).
4. Galbally, I. E., and Kirstine, W. 2002. The production of methanol by flowering plants and the global cycle of methanol. Journal of Atmospheric Chemistry 43 (3): 195-229.
5. Hanson, A. D., and Roje, S. 2001. One-carbon metabolism in higher plants. Annual Review of Plant Biology 52 (1): 119-137.
6. Hosseinzadeh, S. R., Salimi, A., and Ganjeali, A. 2011. Effects of foliar application of methanol on morphological characteristics of chickpea (Cicer arietinum L.) under drought stress. Environmental Stresses in Crop Science 4: 139-150. (in Persian with English abstract).
7. Ivanova, E. G., Doronina, N. V., and Trotsenko, Y. A. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70 (4): 392-397.
8. Li, Y., Gupta, G., Joshi, J. M., and Siyumbano, A. K. 1995. Effect of methanol on soybean photosynthesis and chlorophyll. Journal of Plant Nutrition 18 (9): 1875-1880.
9. Makhdum, I. M., Nawaz, A., Shabab, M., Ahmad. F., and Illahi, F. 2002. Physiological response of cotton to methanol foliar application. Journal of Research (Science) 13: 37-43.
10. Mirakhori, M., Paknejad, F., Ardakani, M., Moradi, F., Nazeri, P., and Nasri, M. 2011. Effect of methanol spraying on yield and yield components of soybean (Glycine max L.). Agroecology 2 (2): 236-244. (in Persian with English abstract).
11. Mirakhori, M., Paknejad, F., Vazan, S., Nazeri, P., Reihani, Y., and Mortezapoor, H. 2010. Effect of methanol foliar application on yield and yield components of red bean. 11th Iranian Crop Science Congress. Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran. (in Persian).
12. Muchow, R. C., Sinclair, T. R. and Bennett, J. M. 1990. Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal 82 (2): 338-343.
13. Nadali, I., Yarnia, M., Paknezhad, F., and Farahvash, F. 2016. Study of some qualititative and quantitative traits of sugar beet in response to foliar application of methanol and drought stress. Environmental Stresses in Crop Sciences 8 (2): 169-187. (in Persian with English abstract).
14. Nonomura, A. M., and Benson, A. A. 1992. The path of carbon in photosynthesis: improved crop yields with methanol. Proceedings of the National Academy of Sciences 89 (20): 9794-9798.
15. Ramberg, H., and Bradley, J. 2002. The role of methanol in promoting plant growth: an update. Plant Biochemistry and Biotechnology 1: 113-126.
16. Ramirez, I., Dorta, F., Espinoza, V., Jimenez, E., Mercado, A., and Peña-Cortes, H. 2006. Effects of foliar and root applications of methanol on the growth of arabidopsis, tobacco, and tomato plants. Journal of Plant Growth Regulation 25 (1): 30-44.
17. Rowe, R. N., Farr, D. J., and Richards, B. A. J. 1994. Effects of foliar and root applications of methanol or ethanol on the growth of tomato plants (Lycopersicon esculentum Mill). New Zealand Journal of Crop and Horticultural Science 22 (3): 335-337.
18. Sabokrow Foomany, K., Safarzadeh, M. N., Daneshian, J., Ranjbar Choobeh, N., and Sabokrow Foomany, K. 2011. Studing the effect of time and values of methanol foliation on quality and quantity yield flue-cured tobacco of cocker 347 type in Ahmadgurab region of Rasht. Journal of Plan Production 18 (3): 17-30. (in Persian with English abstract).
19. Taherabadi, S., Parsa, M., and Nezami, A. 2015. Effects of irrigation and foliar application of methanol on growth indices of chickpea (Cicer arietinum L.). Environmental Stresses in Crop Sciences 7 (2): 273-276. (in Persian with English abstract).
20. Zbieć, I., Karczmarczyk, S., and Podsiadło, C. 2003. Response of some cultivated plants to methanol as compared to supplemental irrigation. Electronic Journal of Polish Agricultural Universities 6 (1): 1-7.