اثر تنش گرمای آخر فصل بر برخی صفات زراعی، فیزیولوژیک و عملکرد روغن ارقام گلرنگ (Carthamus tinctorius L.) در شرایط آب و هوایی اهواز

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید چمران اهواز

چکیده

تنش گرما یکی از تنش‌های غیرزیستی مهم در مناطق گرمسیری و نیمه‌گرمسیری است که به شدت، رشد و عملکرد گیاهان زراعی را کاهش می‌دهد. به‌منظور بررسی واکنش رشدی و عملکردی ارقام گلرنگ زراعی به تنش گرمای آخر فصل، پژوهشی به‌صورت کرت‌های یک‌بار خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 97- 1396 در مزرعه آزمایشی دانشگاه شهید چمران اهواز، اجرا شد. تنش گرما به‌صورت تأخیر در تاریخ کاشت و هم‌زمانی مراحل رشد زایشی با تنش گرمای آخر فصل در نظر گرفته شد. کرت‌های اصلی این آزمایش شامل سه تاریخ کاشت 20 آذر، 10 دی و 30 دی (به‌ترتیب تاریخ کاشت به هنگام، تأخیری و دیرهنگام) و کرت‌های فرعی شامل چهار رقم گلرنگ زراعی (گلدشت، پرنیان، صفه و فرامان) بود. تنش گرما سبب کاهش معنی‌دار عملکرد زیست‌توده، عملکرد دانه و فعالیت آنزیمی کاتالاز و افزایش شاخص برداشت، غلظت کلروفیل کل برگ و فعالیت آنزیم پراکسیداز شد، اگرچه واکنش‌ ارقام متفاوت بود. بیشترین میزان عملکرد دانه و زیست‌توده مربوط به رقم فرامان در شرایط شاهد به‌ترتیب با میانگین 4151 و 23352 کیلوگرم در هکتار بود. وقوع تنش گرمای آخر فصل منجر به کاهش معنی‌دار عملکرد دانه ارقام صفه، پرنیان، فرامان و گلدشت به‌ترتیب به میزان 53، 44، 60 و 47 درصد در تاریخ کاشت 30 دی نسبت به تاریخ کاشت 20 آذر شد که این میزان به‌ترتیب برابر با 32/1، 1/1، 5/1 و 17/1 درصد به ازای هر روز تأخیر در تاریخ کاشت بود. براساس شاخص حساسیت به تنش (SSI)، ارقام پرنیان و گلدشت بـا مقـادیر 85/0 و 92/0 از تحمل بالایی برخوردار بودند؛ در حالی‌که ارقام فرامان و صفه با شاخص 16/1 و 03/1 حساسیت زیادی نسبت به تنش داشتند. به‌طور کلی نتایج این پژوهش نشان داد که در صورت تأخیر در تاریخ کاشت، توصیه می‌شود که از رقم گلدشت استفاده شود، چرا که عملکرد دانه و روغن آن نسبت به سایر ارقام برتری قابل توجهی در تاریخ‌های مختلف کاشت داشت.

کلیدواژه‌ها


1. Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23: 112-121.
2. Chakraborty, U., and Pradhan, D. 2011. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. Journal of Plant Interactions 6 (1): 43-52.
3. Chance, B., and Maehly, A. 1955. Assay of catalases and peroxidases. Methods in enzymology 2: 764-775.
4. Dadashi, N., and Khajehpour, M. 2005. Effect of planting date and cultivar on growth, yield components and yield of safflower in Isfahan, Science and Technology of Agricultural and Natural Resources 8 (3): 95-112.
5. Dhindsa, R. S., Plumb-Dhindsa, P., and Thorpe, T. A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32: 93-101.
6. Dhyani, K., Ansari, M. W., Rao, Y. R., Verma, R. S., Shukla, A., and Tuteja, N. 2013. Comparative physiological response of wheat genotypes under terminal heat stress. Plant Signaling & Behavior 8 (6): e24564.
7. Fernandez, G. C. 1992. Effective selection criteria for assessing plant stress tolerance. In: proceeding of the International symposium on adaptation of vegetables and other crops in temperature and water stress. Taiwan, 13-16 August 1992, 257-270.
8. Fischer, R. A., and Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research 29 (5): 897-912.
9. Gilani, A. A., Siadat, S. A., Alami-Saeed, K., Bakhshandeh, A. M., Moradi, F., and Seidnejad, M. 2009. Effect of heat stress on grain yield stability, chlorophyll content and cell membrane stability of flag leaf in commercial rice cultivars in Khuzestan. Iranian Journal of Crop Sciences 11 (1): 82-100.
10. Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., and Fujita, M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14 (5): 9643-9684.
11. Heidari Zade, P. 2004. The effect of temperature and day length on safflower generative and reproductive growth (Kuseh cultivar). MSc Thesis. Industrial University of Isfahan. (in Persian).
12. Latif, S., and Anwar, F. 2008. Quality assessment of Moringa concanensis seed oil extracted through solvent and aqueous-enzymatic techniques. Grasas y aceites, 59 (1): 69-75.
13. Lombardini, L., Harris, M. K., and Glenn, D. M. 2005. Effects of particle film application on leaf gas exchange, water relations, nut yield, and insect populations in mature pecan trees. HortScience 40 (5): 1376-1380.
14. Moller, I. M., Jensen, P. E., and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annual Review of Plant Biology 58: 459-481.
15. Moosavi, S. G., Seghatoleslami, M., and Ansarinia, E. 2014. Fennel morphological traits and yield as affected by sowing date and plant density. Advance in Agriculture and Biology 2: 45-49.
16. Nawaz, A., Farooq, M., Cheema, S. A., and Wahid, A. 2013. Differential response of wheat cultivars to terminal heat stress. International Journal of Agriculture and Biology 15 (6): 1354-1358.
17. Omidi, A. H., and Sharifmogadas, M. R. 2010. Evaluation of Iranian Safflower cultivars reaction to different sowing date and plant densities. World Applied Science Journal 8: 953-958.
18. Oz, M. 2016. Relationship between sowing time, variety, and quality in safflower. Journal of Chemistry 2016. 8
19. Pasban Eslam, B. 2018. Effect of planting date on reducing growth period of spring safflower cultivars in Tabriz cold and semi-arid climate. Iranian Journal of Field Crops Research 15 (4): 851-860.
20. Pasban Eslam, B. 2003. Evaluation of fall safflower cultivars in different planting dated in khosrowshahr of Tabriz. Final Report of Research Project. No. 83.305. AREEO. Pp.: 8-15. (in Persian with English abstract).
21. Reynolds, M. P., and Lopes, M. S. 2009. Partitioning of assimilates to deeper roots in associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 183: 129-136.
22. Reynolds, M. P., Pellergrineschi, A., and Skovmand, B. 2005. Sink –Limitation to yield and biomass: A summary of some investigations in spring wheat. Annals of Applied Biology 146 (1): 39-49.
23. Safara, N., Telavat, M. R. M., Siadat, S. A., Koochekzadeh, A., and Mousavi, S. H. 2016. Effect of sowing date and sulfur on yield, oil content and grain nitrogen of safflower (Carthamus tinctorius L.) in autumn cultivation. Iranian Journal of Field Crops Research 14 (3): 438-448.
24. Sahu, J., and Thakur, N. S. 2016. Response of date of sowing on yield and yield attributes of safflower cultivars. An International Quarterly Journal of life Sciences 11 (1): 503-507.
25. Samadi-Firouzabadi, B., and Yazdani, F. 2012. Effect of planting date on seed and oil yields of four safflower cultivars in Varamin areas. Seed and Plant Journal 2 (4): 459-470.
26. Shahid, M., Saleem, M. F., Anjum, S. A., Shahid, M., and Afzal, I. 2017. Biochemical markers assisted screening of Pakistani wheat (Triticum aestivum L.) cultivars for terminal heat stress tolerance. Pakistan Journal of Agriculture Sciences 54 (4): 817-825.
27. Shahsavari, M., Yasari, T., and Omidi, A. H. 2012. Effect of planting date on developmental stages and some agronomic traits of spring safflower cultivars. Iranian Journal of Field Crops Research 10 (2). 392-400.
28. Torabi, B., Adibniya, M., and Rahimi, A. 2015. Seedling emergence response to temperature in safflower: measurements and modeling. International Journal of Plant Production 9 (3): 393-412.
29. Uzun, B., Zengın, Ü., Furat, S., and Akdesır, Ö. 2009. Sowing date effects on growth, flowering, oil content and seed yield of canola cultivars. Asian Journal of Chemistry 21 (3): 1957-1965.
CAPTCHA Image